Search Results

Documents authored by Limouzy, Vincent


Document
The Canadian Traveller Problem on Outerplanar Graphs

Authors: Laurent Beaudou, Pierre Bergé, Vsevolod Chernyshev, Antoine Dailly, Yan Gerard, Aurélie Lagoutte, Vincent Limouzy, and Lucas Pastor

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
We study the k-Canadian Traveller Problem, where a weighted graph G = (V,E,ω) with a source s ∈ V and a target t ∈ V are given. This problem also has a hidden input E_* ⊊ E of cardinality at most k representing blocked edges. The objective is to travel from s to t with the minimum distance. At the beginning of the walk, the blockages E_* are unknown: the traveller discovers that an edge is blocked when visiting one of its endpoints. Online algorithms, also called strategies, have been proposed for this problem and assessed with the competitive ratio, i.e., the ratio between the distance actually traversed by the traveller divided by the distance he would have traversed knowing the blockages in advance. Even though the optimal competitive ratio is 2k+1 even on unit-weighted planar graphs of treewidth 2, we design a polynomial-time strategy achieving competitive ratio 9 on unit-weighted outerplanar graphs. This value 9 also stands as a lower bound for this family of graphs as we prove that, for any ε > 0, no strategy can achieve a competitive ratio 9-ε. Finally, we show that it is not possible to achieve a constant competitive ratio (independent of G and k) on weighted outerplanar graphs.

Cite as

Laurent Beaudou, Pierre Bergé, Vsevolod Chernyshev, Antoine Dailly, Yan Gerard, Aurélie Lagoutte, Vincent Limouzy, and Lucas Pastor. The Canadian Traveller Problem on Outerplanar Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beaudou_et_al:LIPIcs.MFCS.2024.19,
  author =	{Beaudou, Laurent and Berg\'{e}, Pierre and Chernyshev, Vsevolod and Dailly, Antoine and Gerard, Yan and Lagoutte, Aur\'{e}lie and Limouzy, Vincent and Pastor, Lucas},
  title =	{{The Canadian Traveller Problem on Outerplanar Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.19},
  URN =		{urn:nbn:de:0030-drops-205750},
  doi =		{10.4230/LIPIcs.MFCS.2024.19},
  annote =	{Keywords: Canadian Traveller Problem, Online algorithms, Competitive analysis, Outerplanar graphs}
}
Document
Track A: Algorithms, Complexity and Games
Polynomial Delay Algorithm for Minimal Chordal Completions

Authors: Caroline Brosse, Vincent Limouzy, and Arnaud Mary

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Motivated by the problem of enumerating all tree decompositions of a graph, we consider in this article the problem of listing all the minimal chordal completions of a graph. In [Carmeli et al., 2020] (Pods 2017) Carmeli et al. proved that all minimal chordal completions or equivalently all proper tree decompositions of a graph can be listed in incremental polynomial time using exponential space. The total running time of their algorithm is quadratic in the number of solutions and the existence of an algorithm whose complexity depends only linearly on the number of solutions remained open. We close this question by providing a polynomial delay algorithm to solve this problem which, moreover, uses polynomial space. Our algorithm relies on Proximity Search, a framework recently introduced by Conte and Uno [Conte and Uno, 2019] (Stoc 2019) which has been shown powerful to obtain polynomial delay algorithms, but generally requires exponential space. In order to obtain a polynomial space algorithm for our problem, we introduce a new general method called canonical path reconstruction to design polynomial delay and polynomial space algorithms based on proximity search.

Cite as

Caroline Brosse, Vincent Limouzy, and Arnaud Mary. Polynomial Delay Algorithm for Minimal Chordal Completions. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{brosse_et_al:LIPIcs.ICALP.2022.33,
  author =	{Brosse, Caroline and Limouzy, Vincent and Mary, Arnaud},
  title =	{{Polynomial Delay Algorithm for Minimal Chordal Completions}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.33},
  URN =		{urn:nbn:de:0030-drops-163740},
  doi =		{10.4230/LIPIcs.ICALP.2022.33},
  annote =	{Keywords: Graph Algorithm, Algorithmic Enumeration, Minimal chordal completions}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail