Search Results

Documents authored by Lizurej, Tomasz


Document
Bribe & Fork: Cheap PCN Bribing Attacks via Forking Threat

Authors: Zeta Avarikioti, Paweł Kędzior, Tomasz Lizurej, and Tomasz Michalak

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
In this work, we reexamine the vulnerability of Payment Channel Networks (PCNs) to bribing attacks, where an adversary incentivizes blockchain miners to deliberately ignore a specific transaction to undermine the punishment mechanism of PCNs. While previous studies have posited a prohibitive cost for such attacks, we show that this cost can be dramatically reduced (to approximately $125), thereby increasing the likelihood of these attacks. To this end, we introduce Bribe & Fork, a modified bribing attack that leverages the threat of a so-called feather fork which we analyze with a novel formal model for the mining game with forking. We empirically analyze historical data of some real-world blockchain implementations to evaluate the scale of this cost reduction. Our findings shed more light on the potential vulnerability of PCNs and highlight the need for robust solutions.

Cite as

Zeta Avarikioti, Paweł Kędzior, Tomasz Lizurej, and Tomasz Michalak. Bribe & Fork: Cheap PCN Bribing Attacks via Forking Threat. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{avarikioti_et_al:LIPIcs.AFT.2024.11,
  author =	{Avarikioti, Zeta and K\k{e}dzior, Pawe{\l} and Lizurej, Tomasz and Michalak, Tomasz},
  title =	{{Bribe \& Fork: Cheap PCN Bribing Attacks via Forking Threat}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.11},
  URN =		{urn:nbn:de:0030-drops-209473},
  doi =		{10.4230/LIPIcs.AFT.2024.11},
  annote =	{Keywords: Blockchain, Payment Channels Networks, Timelock Bribing, Feather Forking}
}
Document
Efficiently Testable Circuits

Authors: Mirza Ahad Baig, Suvradip Chakraborty, Stefan Dziembowski, Małgorzata Gałązka, Tomasz Lizurej, and Krzysztof Pietrzak

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In this work, we put forward the notion of "efficiently testable circuits" and provide circuit compilers that transform any circuit into an efficiently testable one. Informally, a circuit is testable if one can detect tampering with the circuit by evaluating it on a small number of inputs from some test set. Our technical contribution is a compiler that transforms any circuit C into a testable circuit (Ĉ,𝕋̂) for which we can detect arbitrary tampering with all wires in Ĉ. The notion of a testable circuit is weaker or incomparable to existing notions of tamper-resilience, which aim to detect or even correct for errors introduced by tampering during every query, but our new notion is interesting in several settings, and we achieve security against much more general tampering classes - like tampering with all wires - with very modest overhead. Concretely, starting from a circuit C of size n and depth d, for any L (think of L as a small constant, say L = 4), we get a testable (Ĉ,𝕋̂) where Ĉ is of size ≈ 12n and depth d+log(n)+L⋅ n^{1/L}. The test set 𝕋̂ is of size 4⋅ 2^L. The number of extra input and output wires (i.e., pins) we need to add for the testing is 3+L and 2^L, respectively.

Cite as

Mirza Ahad Baig, Suvradip Chakraborty, Stefan Dziembowski, Małgorzata Gałązka, Tomasz Lizurej, and Krzysztof Pietrzak. Efficiently Testable Circuits. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 10:1-10:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{baig_et_al:LIPIcs.ITCS.2023.10,
  author =	{Baig, Mirza Ahad and Chakraborty, Suvradip and Dziembowski, Stefan and Ga{\l}\k{a}zka, Ma{\l}gorzata and Lizurej, Tomasz and Pietrzak, Krzysztof},
  title =	{{Efficiently Testable Circuits}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{10:1--10:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.10},
  URN =		{urn:nbn:de:0030-drops-175130},
  doi =		{10.4230/LIPIcs.ITCS.2023.10},
  annote =	{Keywords: circuit compilers, circuit integrity, circuit testing}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail