Search Results

Documents authored by Lou, Jianing


Document
Track A: Algorithms, Complexity and Games
Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case

Authors: Shaofeng H.-C. Jiang and Jianing Lou

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We devise ε-coresets for robust (k,z)-Clustering with m outliers through black-box reductions to vanilla clustering. Given an ε-coreset construction for vanilla clustering with size N, we construct coresets of size N⋅ polylog(kmε^{-1}) + O_z(min{kmε^{-1}, m ε^{-2z}log^z(kmε^{-1})}) for various metric spaces, where O_z hides 2^{O(zlog z)} factors. This increases the size of the vanilla coreset by a small multiplicative factor of polylog(kmε^{-1}), and the additive term is up to a (ε^{-1}log (km))^{O(z)} factor to the size of the optimal robust coreset. Plugging in recent vanilla coreset results of [Cohen-Addad, Saulpic and Schwiegelshohn, STOC'21; Cohen-Addad, Draganov, Russo, Saulpic and Schwiegelshohn, SODA'25], we obtain the first coresets for (k,z)-Clustering with m outliers with size near-linear in k while previous results have size at least Ω(k²) [Huang, Jiang, Lou and Wu, ICLR'23; Huang, Li, Lu and Wu, SODA'25]. Technically, we establish two conditions under which a vanilla coreset is as well a robust coreset. The first condition requires the dataset to satisfy special structures - it can be broken into "dense" parts with bounded diameter. We combine this with a new bounded-diameter decomposition that has only O_z(km ε^{-1}) non-dense points to obtain the O_z(km ε^{-1}) additive bound. Another sufficient condition requires the vanilla coreset to possess an extra size-preserving property. To utilize this condition, we further give a black-box reduction that turns a vanilla coreset to the one that satisfies the said size-preserving property, and this leads to the alternative O_z(mε^{-2z}log^{z}(kmε^{-1})) additive size bound. We also give low-space implementations of our reductions in the dynamic streaming setting. Combined with known streaming constructions for vanilla coresets [Braverman, Frahling, Lang, Sohler and Yang, ICML'17; Hu, Song, Yang and Zhong, arXiv'1802.00459], we obtain the first dynamic streaming algorithms for coresets for k-Median (and k-Means) with m outliers, using space Õ(k + m) ⋅ poly(dε^{-1}log Δ) for inputs on a discrete grid [Δ]^d.

Cite as

Shaofeng H.-C. Jiang and Jianing Lou. Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 101:1-101:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jiang_et_al:LIPIcs.ICALP.2025.101,
  author =	{Jiang, Shaofeng H.-C. and Lou, Jianing},
  title =	{{Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{101:1--101:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.101},
  URN =		{urn:nbn:de:0030-drops-234781},
  doi =		{10.4230/LIPIcs.ICALP.2025.101},
  annote =	{Keywords: Coresets, clustering, outliers, streaming algorithms}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail