Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)
Jack H. Lutz, Neil Lutz, and Elvira Mayordomo. Extending the Reach of the Point-To-Set Principle. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 48:1-48:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{lutz_et_al:LIPIcs.STACS.2022.48, author = {Lutz, Jack H. and Lutz, Neil and Mayordomo, Elvira}, title = {{Extending the Reach of the Point-To-Set Principle}}, booktitle = {39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)}, pages = {48:1--48:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-222-8}, ISSN = {1868-8969}, year = {2022}, volume = {219}, editor = {Berenbrink, Petra and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.48}, URN = {urn:nbn:de:0030-drops-158585}, doi = {10.4230/LIPIcs.STACS.2022.48}, annote = {Keywords: algorithmic dimensions, geometric measure theory, hyperspace, point-to-set principle} }
Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)
Christopher Jung, Sampath Kannan, and Neil Lutz. Service in Your Neighborhood: Fairness in Center Location. In 1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{jung_et_al:LIPIcs.FORC.2020.5, author = {Jung, Christopher and Kannan, Sampath and Lutz, Neil}, title = {{Service in Your Neighborhood: Fairness in Center Location}}, booktitle = {1st Symposium on Foundations of Responsible Computing (FORC 2020)}, pages = {5:1--5:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-142-9}, ISSN = {1868-8969}, year = {2020}, volume = {156}, editor = {Roth, Aaron}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.5}, URN = {urn:nbn:de:0030-drops-120215}, doi = {10.4230/LIPIcs.FORC.2020.5}, annote = {Keywords: Fairness, Clustering, Facility Location} }
Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)
Neil Lutz and Donald M. Stull. Projection Theorems Using Effective Dimension. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 71:1-71:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{lutz_et_al:LIPIcs.MFCS.2018.71, author = {Lutz, Neil and Stull, Donald M.}, title = {{Projection Theorems Using Effective Dimension}}, booktitle = {43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)}, pages = {71:1--71:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-086-6}, ISSN = {1868-8969}, year = {2018}, volume = {117}, editor = {Potapov, Igor and Spirakis, Paul and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.71}, URN = {urn:nbn:de:0030-drops-96532}, doi = {10.4230/LIPIcs.MFCS.2018.71}, annote = {Keywords: algorithmic randomness, geometric measure theory, Hausdorff dimension, Kolmogorov complexity} }
Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)
Neil Lutz. Fractal Intersections and Products via Algorithmic Dimension. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 58:1-58:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
@InProceedings{lutz:LIPIcs.MFCS.2017.58, author = {Lutz, Neil}, title = {{Fractal Intersections and Products via Algorithmic Dimension}}, booktitle = {42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)}, pages = {58:1--58:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-046-0}, ISSN = {1868-8969}, year = {2017}, volume = {83}, editor = {Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.58}, URN = {urn:nbn:de:0030-drops-80875}, doi = {10.4230/LIPIcs.MFCS.2017.58}, annote = {Keywords: algorithmic randomness, geometric measure theory, Hausdorff dimension, Kolmogorov complexity} }
Published in: LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)
Jack H. Lutz and Neil Lutz. Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 53:1-53:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
@InProceedings{lutz_et_al:LIPIcs.STACS.2017.53, author = {Lutz, Jack H. and Lutz, Neil}, title = {{Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension}}, booktitle = {34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)}, pages = {53:1--53:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-028-6}, ISSN = {1868-8969}, year = {2017}, volume = {66}, editor = {Vollmer, Heribert and Vall\'{e}e, Brigitte}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.53}, URN = {urn:nbn:de:0030-drops-69806}, doi = {10.4230/LIPIcs.STACS.2017.53}, annote = {Keywords: algorithmic randomness, conditional dimension, geometric measure theory, Kakeya sets, Kolmogorov complexity} }
Feedback for Dagstuhl Publishing