Search Results

Documents authored by Lyu, Xin


Document
Track A: Algorithms, Complexity and Games
New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

Authors: Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We give the first pseudorandom generators with sub-linear seed length for the following variants of read-once branching programs (roBPs): 1) First, we show there is an explicit PRG of seed length O(log²(n/ε)log(n)) fooling unbounded-width unordered permutation branching programs with a single accept state, where n is the length of the program. Previously, [Lee-Pyne-Vadhan RANDOM 2022] gave a PRG with seed length Ω(n) for this class. For the ordered case, [Hoza-Pyne-Vadhan ITCS 2021] gave a PRG with seed length Õ(log n ⋅ log 1/ε). 2) Second, we show there is an explicit PRG fooling unbounded-width unordered regular branching programs with a single accept state with seed length Õ(√{n ⋅ log 1/ε} + log 1/ε). Previously, no non-trivial PRG (with seed length less than n) was known for this class (even in the ordered setting). For the ordered case, [Bogdanov-Hoza-Prakriya-Pyne CCC 2022] gave an HSG with seed length Õ(log n ⋅ log 1/ε). 3) Third, we show there is an explicit PRG fooling width w adaptive branching programs with seed length O(log n ⋅ log² (nw/ε)). Here, the branching program can choose an input bit to read depending on its current state, while it is guaranteed that on any input x ∈ {0,1}ⁿ, the branching program reads each input bit exactly once. Previously, no PRG with a non-trivial seed length is known for this class. We remark that there are some functions computable by constant-width adaptive branching programs but not by sub-exponential-width unordered branching programs. In terms of techniques, we indeed show that the Forbes-Kelly PRG (with the right parameters) from [Forbes-Kelly FOCS 2018] already fools all variants of roBPs above. Our proof adds several new ideas to the original analysis of Forbes-Kelly, and we believe it further demonstrates the versatility of the Forbes-Kelly PRG.

Cite as

Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu. New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2023.39,
  author =	{Chen, Lijie and Lyu, Xin and Tal, Avishay and Wu, Hongxun},
  title =	{{New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.39},
  URN =		{urn:nbn:de:0030-drops-180916},
  doi =		{10.4230/LIPIcs.ICALP.2023.39},
  annote =	{Keywords: pseudorandom generators, derandomization, read-once branching programs}
}
Document
Generalized Private Selection and Testing with High Confidence

Authors: Edith Cohen, Xin Lyu, Jelani Nelson, Tamás Sarlós, and Uri Stemmer

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
Composition theorems are general and powerful tools that facilitate privacy accounting across multiple data accesses from per-access privacy bounds. However they often result in weaker bounds compared with end-to-end analysis. Two popular tools that mitigate that are the exponential mechanism (or report noisy max) and the sparse vector technique, generalized in a recent private selection framework by Liu and Talwar (STOC 2019). In this work, we propose a flexible framework of private selection and testing that generalizes the one proposed by Liu and Talwar, supporting a wide range of applications. We apply our framework to solve several fundamental tasks, including query releasing, top-k selection, and stable selection, with improved confidence-accuracy tradeoffs. Additionally, for online settings, we apply our private testing to design a mechanism for adaptive query releasing, which improves the sample complexity dependence on the confidence parameter for the celebrated private multiplicative weights algorithm of Hardt and Rothblum (FOCS 2010).

Cite as

Edith Cohen, Xin Lyu, Jelani Nelson, Tamás Sarlós, and Uri Stemmer. Generalized Private Selection and Testing with High Confidence. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 39:1-39:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ITCS.2023.39,
  author =	{Cohen, Edith and Lyu, Xin and Nelson, Jelani and Sarl\'{o}s, Tam\'{a}s and Stemmer, Uri},
  title =	{{Generalized Private Selection and Testing with High Confidence}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{39:1--39:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.39},
  URN =		{urn:nbn:de:0030-drops-175426},
  doi =		{10.4230/LIPIcs.ITCS.2023.39},
  annote =	{Keywords: differential privacy, sparse vector technique, adaptive data analysis}
}
Document
RANDOM
Range Avoidance for Low-Depth Circuits and Connections to Pseudorandomness

Authors: Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
In the range avoidance problem, the input is a multi-output Boolean circuit with more outputs than inputs, and the goal is to find a string outside its range (which is guaranteed to exist). We show that well-known explicit construction questions such as finding binary linear codes achieving the Gilbert-Varshamov bound or list-decoding capacity, and constructing rigid matrices, reduce to the range avoidance problem of log-depth circuits, and by a further recent reduction [Ren, Santhanam, and Wang, FOCS 2022] to NC⁰₄ circuits where each output depends on at most 4 input bits. On the algorithmic side, we show that range avoidance for NC⁰₂ circuits can be solved in polynomial time. We identify a general condition relating to correlation with low-degree parities that implies that any almost pairwise independent set has some string that avoids the range of every circuit in the class. We apply this to NC⁰ circuits, and to small width CNF/DNF and general De Morgan formulae (via a connection to approximate-degree), yielding non-trivial small hitting sets for range avoidance in these cases.

Cite as

Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range Avoidance for Low-Depth Circuits and Connections to Pseudorandomness. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.APPROX/RANDOM.2022.20,
  author =	{Guruswami, Venkatesan and Lyu, Xin and Wang, Xiuhan},
  title =	{{Range Avoidance for Low-Depth Circuits and Connections to Pseudorandomness}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{20:1--20:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.20},
  URN =		{urn:nbn:de:0030-drops-171428},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.20},
  annote =	{Keywords: Pseudorandomness, Explicit constructions, Low-depth circuits, Boolean function analysis, Hitting sets}
}
Document
Improved Pseudorandom Generators for AC⁰ Circuits

Authors: Xin Lyu

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We give PRG for depth-d, size-m AC⁰ circuits with seed length O(log^{d-1}(m)log(m/ε)log log(m)). Our PRG improves on previous work [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021] from various aspects. It has optimal dependence on 1/ε and is only one "log log(m)" away from the lower bound barrier. For the case of d = 2, the seed length tightly matches the best-known PRG for CNFs [Anindya De et al., 2010; Avishay Tal, 2017]. There are two technical ingredients behind our new result; both of them might be of independent interest. First, we use a partitioning-based approach to construct PRGs based on restriction lemmas for AC⁰. Previous works [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021] usually built PRGs on the Ajtai-Wigderson framework [Miklós Ajtai and Avi Wigderson, 1989]. Compared with them, the partitioning approach avoids the extra "log(n)" factor that usually arises from the Ajtai-Wigderson framework, allowing us to get the almost-tight seed length. The partitioning approach is quite general, and we believe it can help design PRGs for classes beyond constant-depth circuits. Second, improving and extending [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021], we prove a full derandomization of the powerful multi-switching lemma [Johan Håstad, 2014]. We show that one can use a short random seed to sample a restriction, such that a family of DNFs simultaneously simplifies under the restriction with high probability. This answers an open question in [Zander Kelley, 2021]. Previous derandomizations were either partial (that is, they pseudorandomly choose variables to restrict, and then fix those variables to truly-random bits) or had sub-optimal seed length. In our application, having a fully-derandomized switching lemma is crucial, and the randomness-efficiency of our derandomization allows us to get an almost-tight seed length.

Cite as

Xin Lyu. Improved Pseudorandom Generators for AC⁰ Circuits. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 34:1-34:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lyu:LIPIcs.CCC.2022.34,
  author =	{Lyu, Xin},
  title =	{{Improved Pseudorandom Generators for AC⁰ Circuits}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{34:1--34:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.34},
  URN =		{urn:nbn:de:0030-drops-165963},
  doi =		{10.4230/LIPIcs.CCC.2022.34},
  annote =	{Keywords: pseudorandom generators, derandomization, switching Lemmas, AC⁰}
}
Document
Track A: Algorithms, Complexity and Games
Majority vs. Approximate Linear Sum and Average-Case Complexity Below NC¹

Authors: Lijie Chen, Zhenjian Lu, Xin Lyu, and Igor C. Oliveira

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We develop a general framework that characterizes strong average-case lower bounds against circuit classes 𝒞 contained in NC¹, such as AC⁰[⊕] and ACC⁰. We apply this framework to show: - Generic seed reduction: Pseudorandom generators (PRGs) against 𝒞 of seed length ≤ n -1 and error ε(n) = n^{-ω(1)} can be converted into PRGs of sub-polynomial seed length. - Hardness under natural distributions: If 𝖤 (deterministic exponential time) is average-case hard against 𝒞 under some distribution, then 𝖤 is average-case hard against 𝒞 under the uniform distribution. - Equivalence between worst-case and average-case hardness: Worst-case lower bounds against MAJ∘𝒞 for problems in 𝖤 are equivalent to strong average-case lower bounds against 𝒞. This can be seen as a certain converse to the Discriminator Lemma [Hajnal et al., JCSS'93]. These results were not known to hold for circuit classes that do not compute majority. Additionally, we prove that classical and recent approaches to worst-case lower bounds against ACC⁰ via communication lower bounds for NOF multi-party protocols [Håstad and Goldmann, CC'91; Razborov and Wigderson, IPL'93] and Torus polynomials degree lower bounds [Bhrushundi et al., ITCS'19] also imply strong average-case hardness against ACC⁰ under the uniform distribution. Crucial to these results is the use of non-black-box hardness amplification techniques and the interplay between Majority (MAJ) and Approximate Linear Sum (SUM̃) gates. Roughly speaking, while a MAJ gate outputs 1 when the sum of the m input bits is at least m/2, a SUM̃ gate computes a real-valued bounded weighted sum of the input bits and outputs 1 (resp. 0) if the sum is close to 1 (resp. close to 0), with the promise that one of the two cases always holds. As part of our framework, we explore ideas introduced in [Chen and Ren, STOC'20] to show that, for the purpose of proving lower bounds, a top layer MAJ gate is equivalent to a (weaker) SUM̃ gate. Motivated by this result, we extend the algorithmic method and establish stronger lower bounds against bounded-depth circuits with layers of MAJ and SUM̃ gates. Among them, we prove that: - Lower bound: NQP does not admit fixed quasi-polynomial size MAJ∘SUM̃∘ACC⁰∘THR circuits. This is the first explicit lower bound against circuits with distinct layers of MAJ, SUM̃, and THR gates. Consequently, if the aforementioned equivalence between MAJ and SUM̃ as a top gate can be extended to intermediate layers, long sought-after lower bounds against the class THR∘THR of depth-2 polynomial-size threshold circuits would follow.

Cite as

Lijie Chen, Zhenjian Lu, Xin Lyu, and Igor C. Oliveira. Majority vs. Approximate Linear Sum and Average-Case Complexity Below NC¹. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 51:1-51:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2021.51,
  author =	{Chen, Lijie and Lu, Zhenjian and Lyu, Xin and Oliveira, Igor C.},
  title =	{{Majority vs. Approximate Linear Sum and Average-Case Complexity Below NC¹}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{51:1--51:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.51},
  URN =		{urn:nbn:de:0030-drops-141202},
  doi =		{10.4230/LIPIcs.ICALP.2021.51},
  annote =	{Keywords: circuit complexity, average-case hardness, complexity lower bounds}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail