Search Results

Documents authored by Ma, Jingjing


Document
Can a permutation be sorted by best short swaps?

Authors: Shu Zhang, Daming Zhu, Haitao Jiang, Jingjing Ma, Jiong Guo, and Haodi Feng

Published in: LIPIcs, Volume 105, 29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018)


Abstract
A short swap switches two elements with at most one element caught between them. Sorting permutation by short swaps asks to find a shortest short swap sequence to transform a permutation into another. A short swap can eliminate at most three inversions. It is still open for whether a permutation can be sorted by short swaps each of which can eliminate three inversions. In this paper, we present a polynomial time algorithm to solve the problem, which can decide whether a permutation can be sorted by short swaps each of which can eliminate 3 inversions in O(n) time, and if so, sort the permutation by such short swaps in O(n^2) time, where n is the number of elements in the permutation. A short swap can cause the total length of two element vectors to decrease by at most 4. We further propose an algorithm to recognize a permutation which can be sorted by short swaps each of which can cause the element vector length sum to decrease by 4 in O(n) time, and if so, sort the permutation by such short swaps in O(n^2) time. This improves upon the O(n^2) algorithm proposed by Heath and Vergara to decide whether a permutation is so called lucky.

Cite as

Shu Zhang, Daming Zhu, Haitao Jiang, Jingjing Ma, Jiong Guo, and Haodi Feng. Can a permutation be sorted by best short swaps?. In 29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 105, pp. 14:1-14:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.CPM.2018.14,
  author =	{Zhang, Shu and Zhu, Daming and Jiang, Haitao and Ma, Jingjing and Guo, Jiong and Feng, Haodi},
  title =	{{Can a permutation be sorted by best short swaps?}},
  booktitle =	{29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018)},
  pages =	{14:1--14:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-074-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{105},
  editor =	{Navarro, Gonzalo and Sankoff, David and Zhu, Binhai},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2018.14},
  URN =		{urn:nbn:de:0030-drops-86957},
  doi =		{10.4230/LIPIcs.CPM.2018.14},
  annote =	{Keywords: Algorithm, Complexity, Short Swap, Permutation, Reversal}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail