Search Results

Documents authored by Maâmra, Khaled


Document
Polynomial Self-Stabilizing Maximum Matching Algorithm with Approximation Ratio 2/3

Authors: Johanne Cohen, Khaled Maâmra, George Manoussakis, and Laurence Pilard

Published in: LIPIcs, Volume 70, 20th International Conference on Principles of Distributed Systems (OPODIS 2016)


Abstract
We present the first polynomial self-stabilizing algorithm for finding a (2/3)-approximation of a maximum matching in a general graph. The previous best known algorithm has been presented by Manne et al. and has a sub-exponential time complexity under the distributed adversarial daemon. Our new algorithm is an adaptation of the Manne et al. algorithm and works under the same daemon, but with a time complexity in O(n^3) moves. Moreover, our algorithm only needs one more boolean variable than the previous one, thus as in the Manne et al. algorithm, it only requires a constant amount of memory space (three identifiers and two booleans per node).

Cite as

Johanne Cohen, Khaled Maâmra, George Manoussakis, and Laurence Pilard. Polynomial Self-Stabilizing Maximum Matching Algorithm with Approximation Ratio 2/3. In 20th International Conference on Principles of Distributed Systems (OPODIS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 70, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.OPODIS.2016.11,
  author =	{Cohen, Johanne and Ma\^{a}mra, Khaled and Manoussakis, George and Pilard, Laurence},
  title =	{{Polynomial Self-Stabilizing Maximum Matching Algorithm with Approximation Ratio 2/3}},
  booktitle =	{20th International Conference on Principles of Distributed Systems (OPODIS 2016)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-031-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{70},
  editor =	{Fatourou, Panagiota and Jim\'{e}nez, Ernesto and Pedone, Fernando},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2016.11},
  URN =		{urn:nbn:de:0030-drops-70808},
  doi =		{10.4230/LIPIcs.OPODIS.2016.11},
  annote =	{Keywords: Self-Stabilization, Distributed Algorithm, Fault Tolerance, Matching}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail