Search Results

Documents authored by Maor, Gal


Document
Derandomized Squaring: An Analytical Insight into Its True Behavior

Authors: Gil Cohen, Itay Cohen, Gal Maor, and Yuval Peled

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
The notion of the derandomized square of two graphs, denoted as G s H, was introduced by Rozenman and Vadhan as they rederived Reingold’s Theorem, SL = 𝐋. This pseudorandom primitive, closely related to the Zig-Zag product, plays a crucial role in recent advancements on space-bounded derandomization. For this and other reasons, understanding the spectral expansion λ(G s H) becomes paramount. Rozenman and Vadhan derived an upper bound for λ(G s H) in terms of the spectral expansions of the individual graphs, λ(G) and λ(H). They also proved their bound is optimal if the only information incorporated to the bound is the spectral expansion of the two graphs. The objective of this work is to gain deeper insights into the behavior of derandomized squaring by taking into account the entire spectrum of H, where we focus on a vertex-transitive c-regular H. Utilizing deep results from analytic combinatorics, we establish a lower bound on λ(G s H) that applies universally to all graphs G. Our work reveals that the bound is the minimum value of the function d⋅ x - d(d-1)χ_x(H)/χ_x'(H) in the domain (c,∞), where χ_x(H) is the characteristic polynomial of the d-vertex graph H. This bound lies far below the known upper bound for λ(G s H) for most reasonable choices for H. Empirical evidence suggests that our lower bound is optimal. We support the tightness of our lower bound by showing that the bound is tight for a class of graphs which exhibit local behavior similar to a derandomized squaring operation with H. To this end, we make use of finite free probability theory. In our second result, we resolve an open question posed by Cohen and Maor (STOC 2023) and establish a lower bound for the spectral expansion of rotating expanders. These graphs are constructed by taking a random walk with vertex permutations occurring after each step. We prove that Cohen and Maor’s construction is essentially optimal. Unlike our results on derandomized squaring, the proof in this instance relies solely on combinatorial methods. The key insight lies in establishing a connection between random walks on graph products and the Fuss-Catalan numbers.

Cite as

Gil Cohen, Itay Cohen, Gal Maor, and Yuval Peled. Derandomized Squaring: An Analytical Insight into Its True Behavior. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 40:1-40:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ITCS.2025.40,
  author =	{Cohen, Gil and Cohen, Itay and Maor, Gal and Peled, Yuval},
  title =	{{Derandomized Squaring: An Analytical Insight into Its True Behavior}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{40:1--40:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.40},
  URN =		{urn:nbn:de:0030-drops-226681},
  doi =		{10.4230/LIPIcs.ITCS.2025.40},
  annote =	{Keywords: Derandomized Squaring, Spectral Graph Theory, Analytic Combinatorics}
}
Document
RANDOM
Sparse High Dimensional Expanders via Local Lifts

Authors: Inbar Ben Yaacov, Yotam Dikstein, and Gal Maor

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
High dimensional expanders (HDXs) are a hypergraph generalization of expander graphs. They are extensively studied in the math and TCS communities due to their many applications. Like expander graphs, HDXs are especially interesting for applications when they are bounded degree, namely, if the number of edges adjacent to every vertex is bounded. However, only a handful of constructions are known to have this property, all of which rely on algebraic techniques. In particular, no random or combinatorial construction of bounded degree high dimensional expanders is known. As a result, our understanding of these objects is limited. The degree of an i-face in an HDX is the number of (i+1)-faces that contain it. In this work we construct complexes whose higher dimensional faces have bounded degree. This is done by giving an elementary and deterministic algorithm that takes as input a regular k-dimensional HDX X and outputs another regular k-dimensional HDX X̂ with twice as many vertices. While the degree of vertices in X̂ grows, the degree of the (k-1)-faces in X̂ stays the same. As a result, we obtain a new "algebra-free" construction of HDXs whose (k-1)-face degree is bounded. Our construction algorithm is based on a simple and natural generalization of the expander graph construction by Bilu and Linial [Yehonatan Bilu and Nathan Linial, 2006], which build expander graphs using lifts coming from edge signings. Our construction is based on local lifts of high dimensional expanders, where a local lift is a new complex whose top-level links are lifts of the links of the original complex. We demonstrate that a local lift of an HDX is also an HDX in many cases. In addition, combining local lifts with existing bounded degree constructions creates new families of bounded degree HDXs with significantly different links than before. For every large enough D, we use this technique to construct families of bounded degree HDXs with links that have diameter ≥ D.

Cite as

Inbar Ben Yaacov, Yotam Dikstein, and Gal Maor. Sparse High Dimensional Expanders via Local Lifts. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 68:1-68:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{benyaacov_et_al:LIPIcs.APPROX/RANDOM.2024.68,
  author =	{Ben Yaacov, Inbar and Dikstein, Yotam and Maor, Gal},
  title =	{{Sparse High Dimensional Expanders via Local Lifts}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{68:1--68:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.68},
  URN =		{urn:nbn:de:0030-drops-210612},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.68},
  annote =	{Keywords: High Dimensional Expanders, HDX, Spectral Expansion, Lifts, Covers, Explicit Constructions, Randomized Constructions, Deterministic Constructions}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail