Search Results

Documents authored by Mardare, Radu


Document
Tensor of Quantitative Equational Theories

Authors: Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon Plotkin

Published in: LIPIcs, Volume 211, 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021)


Abstract
We develop a theory for the commutative combination of quantitative effects, their tensor, given as a combination of quantitative equational theories that imposes mutual commutation of the operations from each theory. As such, it extends the sum of two theories, which is just their unrestrained combination. Tensors of theories arise in several contexts; in particular, in the semantics of programming languages, the monad transformer for global state is given by a tensor. We show that under certain assumptions on the quantitative theories the free monad that arises from the tensor of two theories is the categorical tensor of the free monads on the theories. As an application, we provide the first algebraic axiomatizations of labelled Markov processes and Markov decision processes. Apart from the intrinsic interest in the axiomatizations, it is pleasing they are obtained compositionally by means of the sum and tensor of simpler quantitative equational theories.

Cite as

Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Tensor of Quantitative Equational Theories. In 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 211, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bacci_et_al:LIPIcs.CALCO.2021.7,
  author =	{Bacci, Giorgio and Mardare, Radu and Panangaden, Prakash and Plotkin, Gordon},
  title =	{{Tensor of Quantitative Equational Theories}},
  booktitle =	{9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-212-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{211},
  editor =	{Gadducci, Fabio and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2021.7},
  URN =		{urn:nbn:de:0030-drops-153628},
  doi =		{10.4230/LIPIcs.CALCO.2021.7},
  annote =	{Keywords: Quantitative equational theories, Tensor, Monads, Quantitative Effects}
}
Document
Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

Authors: Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi Tang, and Franck van Breugel

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynch’s probabilistic bisimilarity for probabilistic automata. In this paper, we present a novel characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condon’s simple policy iteration on these games. The correctness of Condon’s approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in UP cap coUP and PPAD. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. In the proofs of all the above-mentioned results, an alternative presentation of the Hausdorff distance due to Mémoli plays a central rôle.

Cite as

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi Tang, and Franck van Breugel. Computing Probabilistic Bisimilarity Distances for Probabilistic Automata. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bacci_et_al:LIPIcs.CONCUR.2019.9,
  author =	{Bacci, Giorgio and Bacci, Giovanni and Larsen, Kim G. and Mardare, Radu and Tang, Qiyi and van Breugel, Franck},
  title =	{{Computing Probabilistic Bisimilarity Distances for Probabilistic Automata}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.9},
  URN =		{urn:nbn:de:0030-drops-109119},
  doi =		{10.4230/LIPIcs.CONCUR.2019.9},
  annote =	{Keywords: Probabilistic automata, Behavioural metrics, Simple stochastic games, Simple policy iteration algorithm}
}
Document
On the Metric-Based Approximate Minimization of Markov Chains

Authors: Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, and Radu Mardare

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We address the behavioral metric-based approximate minimization problem of Markov Chains (MCs), i.e., given a finite MC and a positive integer k, we are interested in finding a k-state MC of minimal distance to the original. By considering as metric the bisimilarity distance of Desharnais at al., we show that optimal approximations always exist; show that the problem can be solved as a bilinear program; and prove that its threshold problem is in PSPACE and NP-hard. Finally, we present an approach inspired by expectation maximization techniques that provides suboptimal solutions. Experiments suggest that our method gives a practical approach that outperforms the bilinear program implementation run on state-of-the-art bilinear solvers.

Cite as

Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, and Radu Mardare. On the Metric-Based Approximate Minimization of Markov Chains. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 104:1-104:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bacci_et_al:LIPIcs.ICALP.2017.104,
  author =	{Bacci, Giovanni and Bacci, Giorgio and Larsen, Kim G. and Mardare, Radu},
  title =	{{On the Metric-Based Approximate Minimization of Markov Chains}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{104:1--104:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.104},
  URN =		{urn:nbn:de:0030-drops-73675},
  doi =		{10.4230/LIPIcs.ICALP.2017.104},
  annote =	{Keywords: Behavioral distances, Probabilistic Models, Automata Minimization}
}
Document
Probabilistic Mu-Calculus: Decidability and Complete Axiomatization

Authors: Kim G. Larsen, Radu Mardare, and Bingtian Xue

Published in: LIPIcs, Volume 65, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)


Abstract
We introduce a version of the probabilistic mu-calculus (PMC) built on top of a probabilistic modal logic that allows encoding n-ary inequational conditions on transition probabilities. PMC extends previously studied calculi and we prove that, despite its expressiveness, it enjoys a series of good meta-properties. Firstly, we prove the decidability of satisfiability checking by establishing the small model property. An algorithm for deciding the satisfiability problem is developed. As a second major result, we provide a complete axiomatization for the alternation-free fragment of PMC. The completeness proof is innovative in many aspects combining various techniques from topology and model theory.

Cite as

Kim G. Larsen, Radu Mardare, and Bingtian Xue. Probabilistic Mu-Calculus: Decidability and Complete Axiomatization. In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 65, pp. 25:1-25:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{larsen_et_al:LIPIcs.FSTTCS.2016.25,
  author =	{Larsen, Kim G. and Mardare, Radu and Xue, Bingtian},
  title =	{{Probabilistic Mu-Calculus: Decidability and Complete Axiomatization}},
  booktitle =	{36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)},
  pages =	{25:1--25:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-027-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{65},
  editor =	{Lal, Akash and Akshay, S. and Saurabh, Saket and Sen, Sandeep},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2016.25},
  URN =		{urn:nbn:de:0030-drops-68607},
  doi =		{10.4230/LIPIcs.FSTTCS.2016.25},
  annote =	{Keywords: Markov process, probabilistic modal mu-calculus, n-ary (in-)equational modalities, satisfiability, axiomatization}
}
Document
Complete Axiomatization for the Bisimilarity Distance on Markov Chains

Authors: Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare

Published in: LIPIcs, Volume 59, 27th International Conference on Concurrency Theory (CONCUR 2016)


Abstract
In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style of a quantitative extension of equational logic recently proposed by Mardare, Panangaden, and Plotkin (LICS'16) that uses equality relations t =_e s indexed by rationals, expressing that "t is approximately equal to s up to an error e". Notably, our quantitative deductive system extends in a natural way the equational system for probabilistic bisimilarity given by Stark and Smolka by introducing an axiom for dealing with the Kantorovich distance between probability distributions.

Cite as

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Complete Axiomatization for the Bisimilarity Distance on Markov Chains. In 27th International Conference on Concurrency Theory (CONCUR 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 59, pp. 21:1-21:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bacci_et_al:LIPIcs.CONCUR.2016.21,
  author =	{Bacci, Giorgio and Bacci, Giovanni and G. Larsen, Kim and Mardare, Radu},
  title =	{{Complete Axiomatization for the Bisimilarity Distance on Markov Chains}},
  booktitle =	{27th International Conference on Concurrency Theory (CONCUR 2016)},
  pages =	{21:1--21:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-017-0},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{59},
  editor =	{Desharnais, Jos\'{e}e and Jagadeesan, Radha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2016.21},
  URN =		{urn:nbn:de:0030-drops-61569},
  doi =		{10.4230/LIPIcs.CONCUR.2016.21},
  annote =	{Keywords: Markov chains, Behavioral distances, Axiomatization}
}
Document
Parametric Verification of Weighted Systems

Authors: Peter Christoffersen, Mikkel Hansen, Anders Mariegaard, Julian Trier Ringsmose, Kim Guldstrand Larsen, and Radu Mardare

Published in: OASIcs, Volume 44, 2nd International Workshop on Synthesis of Complex Parameters (SynCoP'15) (2015)


Abstract
This paper addresses the problem of parametric model checking for weighted transition systems. We consider transition systems labelled with linear equations over a set of parameters and we use them to provide semantics for a parametric version of weighted CTL where the until and next operators are themselves indexed with linear equations. The parameters change the model-checking problem into a problem of computing a linear system of inequalities that characterizes the parameters that guarantee the satisfiability. To address this problem, we use parametric dependency graphs (PDGs) and we propose a global update function that yields an assignment to each node in a PDG. For an iterative application of the function, we prove that a fixed point assignment to PDG nodes exists and the set of assignments constitutes a well-quasi ordering, thus ensuring that the fixed point assignment can be found after finitely many iterations. To demonstrate the utility of our technique, we have implemented a prototype tool that computes the constraints on parameters for model checking problems.

Cite as

Peter Christoffersen, Mikkel Hansen, Anders Mariegaard, Julian Trier Ringsmose, Kim Guldstrand Larsen, and Radu Mardare. Parametric Verification of Weighted Systems. In 2nd International Workshop on Synthesis of Complex Parameters (SynCoP'15). Open Access Series in Informatics (OASIcs), Volume 44, pp. 77-90, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{christoffersen_et_al:OASIcs.SynCoP.2015.77,
  author =	{Christoffersen, Peter and Hansen, Mikkel and Mariegaard, Anders and Ringsmose, Julian Trier and Larsen, Kim Guldstrand and Mardare, Radu},
  title =	{{Parametric Verification of Weighted Systems}},
  booktitle =	{2nd International Workshop on Synthesis of Complex Parameters (SynCoP'15)},
  pages =	{77--90},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-82-8},
  ISSN =	{2190-6807},
  year =	{2015},
  volume =	{44},
  editor =	{Andr\'{e}, \'{E}tienne and Frehse, Goran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SynCoP.2015.77},
  URN =		{urn:nbn:de:0030-drops-56115},
  doi =		{10.4230/OASIcs.SynCoP.2015.77},
  annote =	{Keywords: parametric weighted transition systems, parametric weighted CTL, parametric model checking, well-quasi ordering, tool}
}
Document
Continuous Markovian Logic - From Complete Axiomatization to the Metric Space of Formulas

Authors: Luca Cardelli, Kim G. Larsen, and Radu Mardare

Published in: LIPIcs, Volume 12, Computer Science Logic (CSL'11) - 25th International Workshop/20th Annual Conference of the EACSL (2011)


Abstract
Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-space and continuous-time labelled Markov processes (CMPs). The modalities of CML approximate the rates of the exponentially distributed random variables that characterize the duration of the labeled transitions. In this paper we present a sound and complete Hilbert-style axiomatization of CML for the CMP-semantics and prove some metaproperties including the small model property. CML characterizes stochastic bisimulation and supports the definition of a quantified extension of satisfiability relation that measures the compatibility of a model and a property. Relying on the small model property, we prove that this measure can be approximated, within a given error, by using a distance between logical formulas.

Cite as

Luca Cardelli, Kim G. Larsen, and Radu Mardare. Continuous Markovian Logic - From Complete Axiomatization to the Metric Space of Formulas. In Computer Science Logic (CSL'11) - 25th International Workshop/20th Annual Conference of the EACSL. Leibniz International Proceedings in Informatics (LIPIcs), Volume 12, pp. 144-158, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{cardelli_et_al:LIPIcs.CSL.2011.144,
  author =	{Cardelli, Luca and Larsen, Kim G. and Mardare, Radu},
  title =	{{Continuous Markovian Logic - From Complete Axiomatization to the Metric Space of Formulas}},
  booktitle =	{Computer Science Logic (CSL'11) - 25th International Workshop/20th Annual Conference of the EACSL},
  pages =	{144--158},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-32-3},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{12},
  editor =	{Bezem, Marc},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2011.144},
  URN =		{urn:nbn:de:0030-drops-32281},
  doi =		{10.4230/LIPIcs.CSL.2011.144},
  annote =	{Keywords: probabilistic logic, axiomatization, Markov processes, metric semantics}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail