Search Results

Documents authored by Maystre, Gilbert


Document
One-Way Functions vs. TFNP: Simpler and Improved

Authors: Lukáš Folwarczný, Mika Göös, Pavel Hubáček, Gilbert Maystre, and Weiqiang Yuan

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Simon (1998) proved that it is impossible to construct collision-resistant hash functions from one-way functions using a black-box reduction. It is conjectured more generally that one-way functions do not imply, via a black-box reduction, the hardness of any total NP search problem (collision-resistant hash functions being just one such example). We make progress towards this conjecture by ruling out a large class of "single-query" reductions. In particular, we improve over the prior work of Hubáček et al. (2020) in two ways: our result is established via a novel simpler combinatorial technique and applies to a broader class of semi black-box reductions.

Cite as

Lukáš Folwarczný, Mika Göös, Pavel Hubáček, Gilbert Maystre, and Weiqiang Yuan. One-Way Functions vs. TFNP: Simpler and Improved. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 50:1-50:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{folwarczny_et_al:LIPIcs.ITCS.2024.50,
  author =	{Folwarczn\'{y}, Luk\'{a}\v{s} and G\"{o}\"{o}s, Mika and Hub\'{a}\v{c}ek, Pavel and Maystre, Gilbert and Yuan, Weiqiang},
  title =	{{One-Way Functions vs. TFNP: Simpler and Improved}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{50:1--50:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.50},
  URN =		{urn:nbn:de:0030-drops-195788},
  doi =		{10.4230/LIPIcs.ITCS.2024.50},
  annote =	{Keywords: TFNP, One-Way Functions, Oracle, Separation, Black-Box}
}
Document
Further Collapses in TFNP

Authors: Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, and Ran Tao

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We show EOPL = PLS ∩ PPAD. Here the class EOPL consists of all total search problems that reduce to the End-of-Potential-Line problem, which was introduced in the works by Hubáček and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our result yields a new simpler proof of the breakthrough collapse CLS = PLS ∩ PPAD by Fearnley et al. (STOC 2021). We also prove a companion result SOPL = PLS ∩ PPADS, where SOPL is the class associated with the Sink-of-Potential-Line problem.

Cite as

Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, and Ran Tao. Further Collapses in TFNP. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goos_et_al:LIPIcs.CCC.2022.33,
  author =	{G\"{o}\"{o}s, Mika and Hollender, Alexandros and Jain, Siddhartha and Maystre, Gilbert and Pires, William and Robere, Robert and Tao, Ran},
  title =	{{Further Collapses in TFNP}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{33:1--33:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.33},
  URN =		{urn:nbn:de:0030-drops-165954},
  doi =		{10.4230/LIPIcs.CCC.2022.33},
  annote =	{Keywords: TFNP, PPAD, PLS, EOPL}
}
Document
A Majority Lemma for Randomised Query Complexity

Authors: Mika Göös and Gilbert Maystre

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
We show that computing the majority of n copies of a boolean function g has randomised query complexity R(Maj∘gⁿ) = Θ(n⋅R ̅_{1/n}(g)). In fact, we show that to obtain a similar result for any composed function f∘gⁿ, it suffices to prove a sufficiently strong form of the result only in the special case g = GapOr.

Cite as

Mika Göös and Gilbert Maystre. A Majority Lemma for Randomised Query Complexity. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 18:1-18:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{goos_et_al:LIPIcs.CCC.2021.18,
  author =	{G\"{o}\"{o}s, Mika and Maystre, Gilbert},
  title =	{{A Majority Lemma for Randomised Query Complexity}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{18:1--18:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.18},
  URN =		{urn:nbn:de:0030-drops-142922},
  doi =		{10.4230/LIPIcs.CCC.2021.18},
  annote =	{Keywords: Query Complexity, Composition, Majority}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail