Search Results

Documents authored by McClintock, Jessica


Document
Precedence-Constrained Min Sum Set Cover

Authors: Jessica McClintock, Julián Mestre, and Anthony Wirth

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
We introduce a version of the Min Sum Set Cover (MSSC) problem in which there are "AND" precedence constraints on the m sets. In the Precedence-Constrained Min Sum Set Cover (PCMSSC) problem, when interpreted as directed edges, the constraints induce an acyclic directed graph. PCMSSC models the aim of scheduling software tests to prioritize the rate of fault detection subject to dependencies between tests. Our greedy scheme for PCMSSC is similar to the approaches of Feige, Lovasz, and, Tetali for MSSC, and Chekuri and Motwani for precedence-constrained scheduling to minimize weighted completion time. With a factor-4 increase in approximation ratio, we reduce PCMSSC to the problem of finding a maximum-density precedence-closed sub-family of sets, where density is the ratio of sub-family union size to cardinality. We provide a greedy factor-sqrt m algorithm for maximizing density; on forests of in-trees, we show this algorithm finds an optimal solution. Harnessing an alternative greedy argument of Chekuri and Kumar for Maximum Coverage with Group Budget Constraints, on forests of out-trees, we design an algorithm with approximation ratio equal to maximum tree height. Finally, with a reduction from the Planted Dense Subgraph detection problem, we show that its conjectured hardness implies there is no polynomial-time algorithm for PCMSSC with approximation factor in O(m^{1/12-epsilon}).

Cite as

Jessica McClintock, Julián Mestre, and Anthony Wirth. Precedence-Constrained Min Sum Set Cover. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 55:1-55:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{mcclintock_et_al:LIPIcs.ISAAC.2017.55,
  author =	{McClintock, Jessica and Mestre, Juli\'{a}n and Wirth, Anthony},
  title =	{{Precedence-Constrained Min Sum Set Cover}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{55:1--55:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.55},
  URN =		{urn:nbn:de:0030-drops-82648},
  doi =		{10.4230/LIPIcs.ISAAC.2017.55},
  annote =	{Keywords: planted dense subgraph, min sum set cover, precedence constrained}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail