Search Results

Documents authored by Meier, Adrian


Document
Obviously Strategyproof Mechanisms for Machine Scheduling

Authors: Diodato Ferraioli, Adrian Meier, Paolo Penna, and Carmine Ventre

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Catering to the incentives of people with limited rationality is a challenging research direction that requires novel paradigms to design mechanisms and approximation algorithms. Obviously strategyproof (OSP) mechanisms have recently emerged as the concept of interest to this research agenda. However, the majority of the literature in the area has either highlighted the shortcomings of OSP or focused on the "right" definition rather than on the construction of these mechanisms. We here give the first set of tight results on the approximation guarantee of OSP mechanisms for scheduling related machines. By extending the well-known cycle monotonicity technique, we are able to concentrate on the algorithmic component of OSP mechanisms and provide some novel paradigms for their design.

Cite as

Diodato Ferraioli, Adrian Meier, Paolo Penna, and Carmine Ventre. Obviously Strategyproof Mechanisms for Machine Scheduling. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 46:1-46:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ferraioli_et_al:LIPIcs.ESA.2019.46,
  author =	{Ferraioli, Diodato and Meier, Adrian and Penna, Paolo and Ventre, Carmine},
  title =	{{Obviously Strategyproof Mechanisms for Machine Scheduling}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{46:1--46:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.46},
  URN =		{urn:nbn:de:0030-drops-111677},
  doi =		{10.4230/LIPIcs.ESA.2019.46},
  annote =	{Keywords: Bounded Rationality, Extensive-form Mechanisms, Approximate Mechanism Design}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail