Éléanore Meyer, Jürgen Giesl, Sophia Greiwe. SiRop (Software, Source Code). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@misc{dagstuhl-artifact-24333, title = {{SiRop}}, author = {Meyer, \'{E}l\'{e}anore and Giesl, J\"{u}rgen and Greiwe, Sophia}, note = {Software, DFG-Research Training Group 2236 UnRAVeL, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:3ca664cebef79bfeb95ec944ddc8441d3b528bf6;origin=https://github.com/aprove-developers/SiRop;visit=swh:1:snp:51bec07ab5b5061e7a0cf5e251adcc2ce0cc1986;anchor=swh:1:rev:d15dac241fed869ede4ad1c432f547a6c3c70b68}{\texttt{swh:1:dir:3ca664cebef79bfeb95ec944ddc8441d3b528bf6}} (visited on 2025-08-20)}, url = {https://github.com/aprove-developers/SiRop}, doi = {10.4230/artifacts.24333}, }
Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)
Éléanore Meyer and Jürgen Giesl. Deciding Termination of Simple Randomized Loops. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 76:1-76:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{meyer_et_al:LIPIcs.MFCS.2025.76, author = {Meyer, \'{E}l\'{e}anore and Giesl, J\"{u}rgen}, title = {{Deciding Termination of Simple Randomized Loops}}, booktitle = {50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)}, pages = {76:1--76:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-388-1}, ISSN = {1868-8969}, year = {2025}, volume = {345}, editor = {Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.76}, URN = {urn:nbn:de:0030-drops-241833}, doi = {10.4230/LIPIcs.MFCS.2025.76}, annote = {Keywords: decision procedures, randomized programs, linear loops, positive almost sure termination} }
Feedback for Dagstuhl Publishing