Search Results

Documents authored by Michaeli, Peleg


Document
Greedy Maximal Independent Sets via Local Limits

Authors: Michael Krivelevich, Tamás Mészáros, Peleg Michaeli, and Clara Shikhelman

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
The random greedy algorithm for finding a maximal independent set in a graph has been studied extensively in various settings in combinatorics, probability, computer science - and even in chemistry. The algorithm builds a maximal independent set by inspecting the vertices of the graph one at a time according to a random order, adding the current vertex to the independent set if it is not connected to any previously added vertex by an edge. In this paper we present a natural and general framework for calculating the asymptotics of the proportion of the yielded independent set for sequences of (possibly random) graphs, involving a useful notion of local convergence. We use this framework both to give short and simple proofs for results on previously studied families of graphs, such as paths and binomial random graphs, and to study new ones, such as random trees. We conclude our work by analysing the random greedy algorithm more closely when the base graph is a tree. We show that in expectation, the cardinality of a random greedy independent set in the path is no larger than that in any other tree of the same order.

Cite as

Michael Krivelevich, Tamás Mészáros, Peleg Michaeli, and Clara Shikhelman. Greedy Maximal Independent Sets via Local Limits. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 20:1-20:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{krivelevich_et_al:LIPIcs.AofA.2020.20,
  author =	{Krivelevich, Michael and M\'{e}sz\'{a}ros, Tam\'{a}s and Michaeli, Peleg and Shikhelman, Clara},
  title =	{{Greedy Maximal Independent Sets via Local Limits}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{20:1--20:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.20},
  URN =		{urn:nbn:de:0030-drops-120507},
  doi =		{10.4230/LIPIcs.AofA.2020.20},
  annote =	{Keywords: Greedy maximal independent set, random graph, local limit}
}
Document
RANDOM
Thresholds in Random Motif Graphs

Authors: Michael Anastos, Peleg Michaeli, and Samantha Petti

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
We introduce a natural generalization of the Erdős-Rényi random graph model in which random instances of a fixed motif are added independently. The binomial random motif graph G(H,n,p) is the random (multi)graph obtained by adding an instance of a fixed graph H on each of the copies of H in the complete graph on n vertices, independently with probability p. We establish that every monotone property has a threshold in this model, and determine the thresholds for connectivity, Hamiltonicity, the existence of a perfect matching, and subgraph appearance. Moreover, in the first three cases we give the analogous hitting time results; with high probability, the first graph in the random motif graph process that has minimum degree one (or two) is connected and contains a perfect matching (or Hamiltonian respectively).

Cite as

Michael Anastos, Peleg Michaeli, and Samantha Petti. Thresholds in Random Motif Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 66:1-66:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{anastos_et_al:LIPIcs.APPROX-RANDOM.2019.66,
  author =	{Anastos, Michael and Michaeli, Peleg and Petti, Samantha},
  title =	{{Thresholds in Random Motif Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{66:1--66:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.66},
  URN =		{urn:nbn:de:0030-drops-112819},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.66},
  annote =	{Keywords: Random graph, Connectivity, Hamiltonicty, Small subgraphs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail