Search Results

Documents authored by Milch, Brian


Document
Learning Probabilistic Relational Dynamics for Multiple Tasks

Authors: Ashwin Deshpande, Brian Milch, Luke S. Zettlemoyer, and Leslie Pack Kaelbling

Published in: Dagstuhl Seminar Proceedings, Volume 7161, Probabilistic, Logical and Relational Learning - A Further Synthesis (2008)


Abstract
The ways in which an agent's actions affect the world can often be modeled compactly using a set of relational probabilistic planning rules. This extended abstract addresses the problem of learning such rule sets for multiple related tasks. We take a hierarchical Bayesian approach, in which the system learns a prior distribution over rule sets. We present a class of prior distributions parameterized by a rule set prototype that is stochastically modified to produce a task-specific rule set. We also describe a coordinate ascent algorithm that iteratively optimizes the task-specific rule sets and the prior distribution. Experiments using this algorithm show that transferring information from related tasks significantly reduces the amount of training data required to predict action effects in blocks-world domains.

Cite as

Ashwin Deshpande, Brian Milch, Luke S. Zettlemoyer, and Leslie Pack Kaelbling. Learning Probabilistic Relational Dynamics for Multiple Tasks. In Probabilistic, Logical and Relational Learning - A Further Synthesis. Dagstuhl Seminar Proceedings, Volume 7161, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{deshpande_et_al:DagSemProc.07161.4,
  author =	{Deshpande, Ashwin and Milch, Brian and Zettlemoyer, Luke S. and Kaelbling, Leslie Pack},
  title =	{{Learning Probabilistic Relational Dynamics for Multiple Tasks}},
  booktitle =	{Probabilistic, Logical and Relational Learning - A Further Synthesis},
  pages =	{1--10},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{7161},
  editor =	{Luc de Raedt and Thomas Dietterich and Lise Getoor and Kristian Kersting and Stephen H. Muggleton},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07161.4},
  URN =		{urn:nbn:de:0030-drops-13846},
  doi =		{10.4230/DagSemProc.07161.4},
  annote =	{Keywords: Hierarchical Bayesian models, transfer learning, multi-task learning, probabilistic planning rules}
}
Document
BLOG: Probabilistic Models with Unknown Objects

Authors: Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov

Published in: Dagstuhl Seminar Proceedings, Volume 5051, Probabilistic, Logical and Relational Learning - Towards a Synthesis (2006)


Abstract
We introduce BLOG, a formal language for defining probability models with unknown objects and identity uncertainty. A BLOG model describes a generative process in which some steps add objects to the world, and others determine attributes and relations on these objects. Subject to certain acyclicity constraints, a BLOG model specifies a unique probability distribution over first-order model structures that can contain varying and unbounded numbers of objects. Furthermore, inference algorithms exist for a large class of BLOG models.

Cite as

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov. BLOG: Probabilistic Models with Unknown Objects. In Probabilistic, Logical and Relational Learning - Towards a Synthesis. Dagstuhl Seminar Proceedings, Volume 5051, pp. 1-6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{milch_et_al:DagSemProc.05051.4,
  author =	{Milch, Brian and Marthi, Bhaskara and Russell, Stuart and Sontag, David and Ong, Daniel L. and Kolobov, Andrey},
  title =	{{BLOG: Probabilistic Models with Unknown Objects}},
  booktitle =	{Probabilistic, Logical and Relational Learning - Towards a Synthesis},
  pages =	{1--6},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{5051},
  editor =	{Luc De Raedt and Thomas Dietterich and Lise Getoor and Stephen H. Muggleton},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05051.4},
  URN =		{urn:nbn:de:0030-drops-4169},
  doi =		{10.4230/DagSemProc.05051.4},
  annote =	{Keywords: Knowledge representation, probability, first-order logic, identity uncertainty, unknown objects}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail