Search Results

Documents authored by Milošević, Zarko


Document
How Robust Are Synchronous Consensus Protocols?

Authors: Nenad Milošević, Daniel Cason, Zarko Milošević, and Fernando Pedone

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
Synchronous Byzantine fault-tolerant (BFT) protocols have long been a reality in an academic setting, yet their practicality remains debated. The main concern of skeptics of synchronous systems is that the correctness of these protocols depends on the timely delivery of all messages within a predefined synchronous bound, Δ. This dependency creates a challenging tradeoff between protocol correctness and performance, as Δ directly impacts both. In this paper, we examine this tradeoff in detail. Specifically, we introduce BoundBFT, a new synchronous BFT consensus protocol. We analyze how BoundBFT’s correctness can be compromised and use this analysis to design and implement the most effective attack strategies that malicious processes could employ. Furthermore, we experimentally determine the synchronous bound Δ that provides sufficient confidence in maintaining protocol correctness even in the presence of malicious replicas. Finally, we apply this discovered bound to BoundBFT, evaluate its performance, and compare it to state-of-the-art synchronous and partially synchronous protocols.

Cite as

Nenad Milošević, Daniel Cason, Zarko Milošević, and Fernando Pedone. How Robust Are Synchronous Consensus Protocols?. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 20:1-20:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{milosevic_et_al:LIPIcs.OPODIS.2024.20,
  author =	{Milo\v{s}evi\'{c}, Nenad and Cason, Daniel and Milo\v{s}evi\'{c}, Zarko and Pedone, Fernando},
  title =	{{How Robust Are Synchronous Consensus Protocols?}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{20:1--20:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.20},
  URN =		{urn:nbn:de:0030-drops-225560},
  doi =		{10.4230/LIPIcs.OPODIS.2024.20},
  annote =	{Keywords: Synchronous Consensus, Byzantine Failures, Blockchain}
}
Document
Robust and Fast Blockchain State Synchronization

Authors: Enrique Fynn, Ethan Buchman, Zarko Milosevic, Robert Soulé, and Fernando Pedone

Published in: LIPIcs, Volume 253, 26th International Conference on Principles of Distributed Systems (OPODIS 2022)


Abstract
State synchronization, the process by which a new or recovering peer catches up with the state of other operational peers, is critical to the operation of blockchain-based systems. Existing approaches to state synchronization typically involve downloading snapshots of system state. Such approaches introduce an attack vector from malicious peers that can significantly degrade performance. Moreover, the process of creating snapshots leads to performance hiccups. This paper presents a technique for peers to catch up with operational peers without trusting any particular peer and gracefully recover from misbehavior during the process. We have integrated our design into a production blockchain middleware. Our evaluation shows that during operation, the transaction throughput is consistently higher without pauses for snapshot construction. Moreover, the time it takes for a new peer to join the blockchain is halved, while at the same time tolerating Byzantine peers.

Cite as

Enrique Fynn, Ethan Buchman, Zarko Milosevic, Robert Soulé, and Fernando Pedone. Robust and Fast Blockchain State Synchronization. In 26th International Conference on Principles of Distributed Systems (OPODIS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 253, pp. 8:1-8:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fynn_et_al:LIPIcs.OPODIS.2022.8,
  author =	{Fynn, Enrique and Buchman, Ethan and Milosevic, Zarko and Soul\'{e}, Robert and Pedone, Fernando},
  title =	{{Robust and Fast Blockchain State Synchronization}},
  booktitle =	{26th International Conference on Principles of Distributed Systems (OPODIS 2022)},
  pages =	{8:1--8:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-265-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{253},
  editor =	{Hillel, Eshcar and Palmieri, Roberto and Rivi\`{e}re, Etienne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2022.8},
  URN =		{urn:nbn:de:0030-drops-176280},
  doi =		{10.4230/LIPIcs.OPODIS.2022.8},
  annote =	{Keywords: state synchronization, replication, blockchain}
}
Document
Short Paper
Formal Specification and Model Checking of the Tendermint Blockchain Synchronization Protocol (Short Paper)

Authors: Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina Stoilkovska, Josef Widder, and Anca Zamfir

Published in: OASIcs, Volume 84, 2nd Workshop on Formal Methods for Blockchains (FMBC 2020)


Abstract
Blockchain synchronization is one of the core protocols of Tendermint blockchains. In this short paper, we discuss our recent efforts in formal specification of the protocol and its implementation, as well as some initial model checking results. We demonstrate that the protocol quality and understanding can be improved by writing specifications and model checking them.

Cite as

Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina Stoilkovska, Josef Widder, and Anca Zamfir. Formal Specification and Model Checking of the Tendermint Blockchain Synchronization Protocol (Short Paper). In 2nd Workshop on Formal Methods for Blockchains (FMBC 2020). Open Access Series in Informatics (OASIcs), Volume 84, pp. 10:1-10:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{braithwaite_et_al:OASIcs.FMBC.2020.10,
  author =	{Braithwaite, Sean and Buchman, Ethan and Konnov, Igor and Milosevic, Zarko and Stoilkovska, Ilina and Widder, Josef and Zamfir, Anca},
  title =	{{Formal Specification and Model Checking of the Tendermint Blockchain Synchronization Protocol}},
  booktitle =	{2nd Workshop on Formal Methods for Blockchains (FMBC 2020)},
  pages =	{10:1--10:8},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-169-6},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{84},
  editor =	{Bernardo, Bruno and Marmsoler, Diego},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2020.10},
  URN =		{urn:nbn:de:0030-drops-134238},
  doi =		{10.4230/OASIcs.FMBC.2020.10},
  annote =	{Keywords: Blockchain, Fault Tolerance, Byzantine Faults, Model Checking}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail