Published in: LIPIcs, Volume 259, 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)
Yuichi Asahiro, Hiroshi Eto, Mingyang Gong, Jesper Jansson, Guohui Lin, Eiji Miyano, Hirotaka Ono, and Shunichi Tanaka. Approximation Algorithms for the Longest Run Subsequence Problem. In 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 259, pp. 2:1-2:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{asahiro_et_al:LIPIcs.CPM.2023.2, author = {Asahiro, Yuichi and Eto, Hiroshi and Gong, Mingyang and Jansson, Jesper and Lin, Guohui and Miyano, Eiji and Ono, Hirotaka and Tanaka, Shunichi}, title = {{Approximation Algorithms for the Longest Run Subsequence Problem}}, booktitle = {34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)}, pages = {2:1--2:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-276-1}, ISSN = {1868-8969}, year = {2023}, volume = {259}, editor = {Bulteau, Laurent and Lipt\'{a}k, Zsuzsanna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2023.2}, URN = {urn:nbn:de:0030-drops-179560}, doi = {10.4230/LIPIcs.CPM.2023.2}, annote = {Keywords: Longest run subsequence problem, bounded occurrence, approximation algorithm} }
Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)
Mingyang Gong, Jing Fan, Guohui Lin, and Eiji Miyano. Approximation Algorithms for Covering Vertices by Long Paths. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 53:1-53:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{gong_et_al:LIPIcs.MFCS.2022.53, author = {Gong, Mingyang and Fan, Jing and Lin, Guohui and Miyano, Eiji}, title = {{Approximation Algorithms for Covering Vertices by Long Paths}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {53:1--53:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.53}, URN = {urn:nbn:de:0030-drops-168517}, doi = {10.4230/LIPIcs.MFCS.2022.53}, annote = {Keywords: Path cover, k-path, local improvement, amortized analysis, approximation algorithm} }
Published in: LIPIcs, Volume 223, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)
Yuichi Asahiro, Jesper Jansson, Guohui Lin, Eiji Miyano, Hirotaka Ono, and Tadatoshi Utashima. Polynomial-Time Equivalences and Refined Algorithms for Longest Common Subsequence Variants. In 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 223, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{asahiro_et_al:LIPIcs.CPM.2022.15, author = {Asahiro, Yuichi and Jansson, Jesper and Lin, Guohui and Miyano, Eiji and Ono, Hirotaka and Utashima, Tadatoshi}, title = {{Polynomial-Time Equivalences and Refined Algorithms for Longest Common Subsequence Variants}}, booktitle = {33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)}, pages = {15:1--15:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-234-1}, ISSN = {1868-8969}, year = {2022}, volume = {223}, editor = {Bannai, Hideo and Holub, Jan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2022.15}, URN = {urn:nbn:de:0030-drops-161424}, doi = {10.4230/LIPIcs.CPM.2022.15}, annote = {Keywords: Repetition-bounded longest common subsequence problem, multiset restricted longest common subsequence problem, one-side-filled longest common subsequence problem, two-side-filled longest common subsequence problem, exact algorithms, and approximation algorithms} }
Feedback for Dagstuhl Publishing