Search Results

Documents authored by Nakaya, Tomoki


Document
Short Paper
Large-Scale Spatial Prediction by Scalable Geographically Weighted Regression: Comparative Study (Short Paper)

Authors: Daisuke Murakami, Narumasa Tsutsumida, Takahiro Yoshida, and Tomoki Nakaya

Published in: LIPIcs, Volume 240, 15th International Conference on Spatial Information Theory (COSIT 2022)


Abstract
Although the scalable geographically weighted regression (GWR) has been developed as a fast regression approach modeling non-stationarity, its potential on spatial prediction is largely unexplored. Given that, this study applies the scalable GWR technique for large-scale spatial prediction, and compares its prediction accuracy with modern geostatistical methods including the nearest-neighbor Gaussian process, and machine learning algorithms including light gradient boosting machine. The result suggests accuracy of our scalable GWR-based prediction.

Cite as

Daisuke Murakami, Narumasa Tsutsumida, Takahiro Yoshida, and Tomoki Nakaya. Large-Scale Spatial Prediction by Scalable Geographically Weighted Regression: Comparative Study (Short Paper). In 15th International Conference on Spatial Information Theory (COSIT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 240, pp. 12:1-12:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{murakami_et_al:LIPIcs.COSIT.2022.12,
  author =	{Murakami, Daisuke and Tsutsumida, Narumasa and Yoshida, Takahiro and Nakaya, Tomoki},
  title =	{{Large-Scale Spatial Prediction by Scalable Geographically Weighted Regression: Comparative Study}},
  booktitle =	{15th International Conference on Spatial Information Theory (COSIT 2022)},
  pages =	{12:1--12:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-257-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{240},
  editor =	{Ishikawa, Toru and Fabrikant, Sara Irina and Winter, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2022.12},
  URN =		{urn:nbn:de:0030-drops-168971},
  doi =		{10.4230/LIPIcs.COSIT.2022.12},
  annote =	{Keywords: Spatial prediction, Scalable geographically weighted regression, Large data, Housing price}
}
Document
Short Paper
A Comparison of Geographically Weighted Principal Components Analysis Methodologies (Short Paper)

Authors: Narumasa Tsutsumida, Daisuke Murakami, Takahiro Yoshida, Tomoki Nakaya, Binbin Lu, Paul Harris, and Alexis Comber

Published in: LIPIcs, Volume 240, 15th International Conference on Spatial Information Theory (COSIT 2022)


Abstract
Principal components analysis (PCA) is a useful analytical tool to represent key characteristics of multivariate data, but does not account for spatial effects when applied in geographical situations. A geographically weighted PCA (GWPCA) caters to this issue, specifically in terms of capturing spatial heterogeneity. However, in certain situations, a GWPCA provides outputs that vary discontinuously spatially, which are difficult to interpret and are not associated with the output from a conventional (global) PCA any more. This study underlines a GW non-negative PCA, a geographically weighted version of non-negative PCA, to overcome this issue by constraining loading values non-negatively. Case study results with a complex multivariate spatial dataset demonstrate such benefits, where GW non-negative PCA allows improved interpretations than that found with conventional GWPCA.

Cite as

Narumasa Tsutsumida, Daisuke Murakami, Takahiro Yoshida, Tomoki Nakaya, Binbin Lu, Paul Harris, and Alexis Comber. A Comparison of Geographically Weighted Principal Components Analysis Methodologies (Short Paper). In 15th International Conference on Spatial Information Theory (COSIT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 240, pp. 21:1-21:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{tsutsumida_et_al:LIPIcs.COSIT.2022.21,
  author =	{Tsutsumida, Narumasa and Murakami, Daisuke and Yoshida, Takahiro and Nakaya, Tomoki and Lu, Binbin and Harris, Paul and Comber, Alexis},
  title =	{{A Comparison of Geographically Weighted Principal Components Analysis Methodologies}},
  booktitle =	{15th International Conference on Spatial Information Theory (COSIT 2022)},
  pages =	{21:1--21:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-257-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{240},
  editor =	{Ishikawa, Toru and Fabrikant, Sara Irina and Winter, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2022.21},
  URN =		{urn:nbn:de:0030-drops-169062},
  doi =		{10.4230/LIPIcs.COSIT.2022.21},
  annote =	{Keywords: Spatial heterogeneity, Geographically weighted, Sparsity, PCA}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail