Search Results

Documents authored by Naor, Oded


Document
Cordial Miners: Fast and Efficient Consensus for Every Eventuality

Authors: Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
Cordial Miners are a family of efficient Byzantine Atomic Broadcast protocols, with instances for asynchrony and eventual synchrony. They improve the latency of state-of-the-art DAG-based protocols by almost 2× and achieve optimal good-case complexity of O(n) by forgoing Reliable Broadcast as a building block. Rather, Cordial Miners use the blocklace - a partially-ordered counterpart of the totally-ordered blockchain data structure - to implement the three algorithmic components of consensus: Dissemination, equivocation-exclusion, and ordering.

Cite as

Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro. Cordial Miners: Fast and Efficient Consensus for Every Eventuality. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 26:1-26:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{keidar_et_al:LIPIcs.DISC.2023.26,
  author =	{Keidar, Idit and Naor, Oded and Poupko, Ouri and Shapiro, Ehud},
  title =	{{Cordial Miners: Fast and Efficient Consensus for Every Eventuality}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{26:1--26:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.26},
  URN =		{urn:nbn:de:0030-drops-191525},
  doi =		{10.4230/LIPIcs.DISC.2023.26},
  annote =	{Keywords: Byzantine Fault Tolerance, State Machine Replication, DAG, Consensus, Blockchain, Blocklace, Cordial Dissemination}
}
Document
On Payment Channels in Asynchronous Money Transfer Systems

Authors: Oded Naor and Idit Keidar

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
Money transfer is an abstraction that realizes the core of cryptocurrencies. It has been shown that, contrary to common belief, money transfer in the presence of Byzantine faults can be implemented in asynchronous networks and does not require consensus. Nonetheless, existing implementations of money transfer still require a quadratic message complexity per payment, making attempts to scale hard. In common blockchains, such as Bitcoin and Ethereum, this cost is mitigated by payment channels implemented as a second layer on top of the blockchain allowing to make many off-chain payments between two users who share a channel. Such channels require only on-chain transactions for channel opening and closing, while the intermediate payments are done off-chain with constant message complexity. But payment channels in-use today require synchrony; therefore, they are inadequate for asynchronous money transfer systems. In this paper, we provide a series of possibility and impossibility results for payment channels in asynchronous money transfer systems. We first prove a quadratic lower bound on the message complexity of on-chain transfers. Then, we explore two types of payment channels, unidirectional and bidirectional. We define them as shared memory abstractions and prove that in certain cases they can be implemented as a second layer on top of an asynchronous money transfer system whereas in other cases it is impossible.

Cite as

Oded Naor and Idit Keidar. On Payment Channels in Asynchronous Money Transfer Systems. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{naor_et_al:LIPIcs.DISC.2022.29,
  author =	{Naor, Oded and Keidar, Idit},
  title =	{{On Payment Channels in Asynchronous Money Transfer Systems}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.29},
  URN =		{urn:nbn:de:0030-drops-172201},
  doi =		{10.4230/LIPIcs.DISC.2022.29},
  annote =	{Keywords: Blockchains, Asynchrony, Byzantine faults, Payment channels}
}
Document
Expected Linear Round Synchronization: The Missing Link for Linear Byzantine SMR

Authors: Oded Naor and Idit Keidar

Published in: LIPIcs, Volume 179, 34th International Symposium on Distributed Computing (DISC 2020)


Abstract
State Machine Replication (SMR) solutions often divide time into rounds, with a designated leader driving decisions in each round. Progress is guaranteed once all correct processes synchronize to the same round, and the leader of that round is correct. Recently suggested Byzantine SMR solutions such as HotStuff, Tendermint, and LibraBFT achieve progress with a linear message complexity and a constant time complexity once such round synchronization occurs. But round synchronization itself incurs an additional cost. By Dolev and Reischuk’s lower bound, any deterministic solution must have Ω(n²) communication complexity. Yet the question of randomized round synchronization with an expected linear message complexity remained open. We present an algorithm that, for the first time, achieves round synchronization with expected linear message complexity and expected constant latency. Existing protocols can use our round synchronization algorithm to solve Byzantine SMR with the same asymptotic performance.

Cite as

Oded Naor and Idit Keidar. Expected Linear Round Synchronization: The Missing Link for Linear Byzantine SMR. In 34th International Symposium on Distributed Computing (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 179, pp. 26:1-26:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{naor_et_al:LIPIcs.DISC.2020.26,
  author =	{Naor, Oded and Keidar, Idit},
  title =	{{Expected Linear Round Synchronization: The Missing Link for Linear Byzantine SMR}},
  booktitle =	{34th International Symposium on Distributed Computing (DISC 2020)},
  pages =	{26:1--26:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-168-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{179},
  editor =	{Attiya, Hagit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.26},
  URN =		{urn:nbn:de:0030-drops-131046},
  doi =		{10.4230/LIPIcs.DISC.2020.26},
  annote =	{Keywords: Distributed Systems, State Machine Replication}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail