Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)
Justin Curry, Washington Mio, Tom Needham, Osman Berat Okutan, and Florian Russold. Stability and Approximations for Decorated Reeb Spaces. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 44:1-44:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{curry_et_al:LIPIcs.SoCG.2024.44, author = {Curry, Justin and Mio, Washington and Needham, Tom and Okutan, Osman Berat and Russold, Florian}, title = {{Stability and Approximations for Decorated Reeb Spaces}}, booktitle = {40th International Symposium on Computational Geometry (SoCG 2024)}, pages = {44:1--44:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-316-4}, ISSN = {1868-8969}, year = {2024}, volume = {293}, editor = {Mulzer, Wolfgang and Phillips, Jeff M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.44}, URN = {urn:nbn:de:0030-drops-199891}, doi = {10.4230/LIPIcs.SoCG.2024.44}, annote = {Keywords: Reeb spaces, Gromov-Hausdorff distance, Persistent homology} }
Feedback for Dagstuhl Publishing