Search Results

Documents authored by Nemery, Edouard


Document
Broadcasting Under Structural Restrictions

Authors: Yudai Egami, Tatsuya Gima, Tesshu Hanaka, Yasuaki Kobayashi, Michael Lampis, Valia Mitsou, Edouard Nemery, Yota Otachi, Manolis Vasilakis, and Daniel Vaz

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
In the Telephone Broadcast problem we are given a graph G = (V,E) with a designated source vertex s ∈ V. Our goal is to transmit a message, which is initially known only to s, to all vertices of the graph by using a process where in each round an informed vertex may transmit the message to one of its uninformed neighbors. The optimization objective is to minimize the number of rounds. Following up on several recent works, we investigate the structurally parameterized complexity of Telephone Broadcast. In particular, we first strengthen existing NP-hardness results by showing that the problem remains NP-complete on graphs of bounded tree-depth and also on cactus graphs which are one vertex deletion away from being path forests. Motivated by this (severe) hardness, we study several other parameterizations of the problem and obtain FPT algorithms parameterized by vertex integrity (generalizing a recent FPT algorithm parameterized by vertex cover by Fomin, Fraigniaud, and Golovach [TCS 2024]) and by distance to clique, as well as FPT approximation algorithms parameterized by clique-cover and cluster vertex deletion. Furthermore, we obtain structural results that relate the length of the optimal broadcast protocol of a graph G with its pathwidth and tree-depth. By presenting a substantial improvement over the best previously known bound for pathwidth (Aminian, Kamali, Seyed-Javadi, and Sumedha [ICALP 2025]) we exponentially improve the approximation ratio achievable in polynomial time on graphs of bounded pathwidth from 𝒪(4^pw) to 𝒪(pw).

Cite as

Yudai Egami, Tatsuya Gima, Tesshu Hanaka, Yasuaki Kobayashi, Michael Lampis, Valia Mitsou, Edouard Nemery, Yota Otachi, Manolis Vasilakis, and Daniel Vaz. Broadcasting Under Structural Restrictions. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 42:1-42:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{egami_et_al:LIPIcs.MFCS.2025.42,
  author =	{Egami, Yudai and Gima, Tatsuya and Hanaka, Tesshu and Kobayashi, Yasuaki and Lampis, Michael and Mitsou, Valia and Nemery, Edouard and Otachi, Yota and Vasilakis, Manolis and Vaz, Daniel},
  title =	{{Broadcasting Under Structural Restrictions}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{42:1--42:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.42},
  URN =		{urn:nbn:de:0030-drops-241492},
  doi =		{10.4230/LIPIcs.MFCS.2025.42},
  annote =	{Keywords: Parameterized Complexity, Structural Graph Parameters, Telephone Broadcast}
}
Document
Parameterized Spanning Tree Congestion

Authors: Michael Lampis, Valia Mitsou, Edouard Nemery, Yota Otachi, Manolis Vasilakis, and Daniel Vaz

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
In this paper we study the Spanning Tree Congestion problem, where we are given an undirected graph G = (V,E) and are asked to find a spanning tree T of minimum maximum congestion. Here, the congestion of an edge e ∈ T is the number of edges uv ∈ E such that the (unique) path from u to v in T traverses e. We consider this well-studied NP-hard problem from the point of view of (structural) parameterized complexity and obtain the following results: - We resolve a natural open problem by showing that Spanning Tree Congestion is not FPT parameterized by treewidth (under standard assumptions). More strongly, we present a generic reduction which applies to (almost) any parameter of the form "vertex-deletion distance to class 𝒞", thus obtaining W[1]-hardness for more restricted parameters, including tree-depth plus feedback vertex set, or incomparable to treewidth, such as twin cover. Via a slight tweak of the same reduction we also show that the problem is NP-complete on graphs of modular-width 4. - Even though it is known that Spanning Tree Congestion remains NP-hard on instances with only one vertex of unbounded degree, it is currently open whether the problem remains hard on bounded-degree graphs. We resolve this question by showing NP-hardness on graphs of maximum degree 8. - Complementing the problem’s W[1]-hardness for treewidth, we formulate an algorithm that runs in time roughly {(k+w)}^{𝒪(w)}, where k is the desired congestion and w the treewidth, improving a previous argument for parameter k+w that was based on Courcelle’s theorem. This explicit algorithm pays off in two ways: it allows us to obtain an FPT approximation scheme for parameter treewidth, that is, a (1+ε)-approximation running in time roughly {(w/ε)}^{𝒪(w)}; and it leads to an exact FPT algorithm for parameter clique-width+k via a Win/Win argument. - Finally, motivated by the problem’s hardness for most standard structural parameters, we present FPT algorithms for several more restricted cases, namely, for the parameters vertex-deletion distance to clique; vertex integrity; and feedback edge set, in the latter case also achieving a single-exponential running time dependence on the parameter.

Cite as

Michael Lampis, Valia Mitsou, Edouard Nemery, Yota Otachi, Manolis Vasilakis, and Daniel Vaz. Parameterized Spanning Tree Congestion. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 65:1-65:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lampis_et_al:LIPIcs.MFCS.2025.65,
  author =	{Lampis, Michael and Mitsou, Valia and Nemery, Edouard and Otachi, Yota and Vasilakis, Manolis and Vaz, Daniel},
  title =	{{Parameterized Spanning Tree Congestion}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{65:1--65:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.65},
  URN =		{urn:nbn:de:0030-drops-241724},
  doi =		{10.4230/LIPIcs.MFCS.2025.65},
  annote =	{Keywords: Parameterized Complexity, Treewidth, Graph Width Parameters}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail