Search Results

Documents authored by Norman, Chase


Artifact
Software
Canonical

Authors: Chase Norman


Abstract

Cite as

Chase Norman. Canonical (Software). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@misc{dagstuhl-artifact-24703,
   title = {{Canonical}}, 
   author = {Norman, Chase},
   note = {Software, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:06a599989bad108dc52bfdff704d356badfa63d4;origin=https://github.com/chasenorman/Canonical;visit=swh:1:snp:b14b45164fd97819d6c472ac9195bf01ab92047c;anchor=swh:1:rev:d5c7fd0d8d0f1a2e4d8eed817d534725ea8e1156}{\texttt{swh:1:dir:06a599989bad108dc52bfdff704d356badfa63d4}} (visited on 2025-09-22)},
   url = {https://github.com/chasenorman/Canonical},
   doi = {10.4230/artifacts.24703},
}
Artifact
Software
CanonicalLean

Authors: Chase Norman


Abstract

Cite as

Chase Norman. CanonicalLean (Software). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@misc{dagstuhl-artifact-24708,
   title = {{CanonicalLean}}, 
   author = {Norman, Chase},
   note = {Software, version v4.22.0., swhId: \href{https://archive.softwareheritage.org/swh:1:dir:98f9920f9b96cabe1c6188b23fd3823d0ad9fb0f;origin=https://github.com/chasenorman/Canonicallean;visit=swh:1:snp:944ef1c9397eb4eb6dc2e6e7d500f38c3033a5ea;anchor=swh:1:rev:65797c0994b252ecca26934afe92766147fedbd3}{\texttt{swh:1:dir:98f9920f9b96cabe1c6188b23fd3823d0ad9fb0f}} (visited on 2025-09-22)},
   url = {https://github.com/chasenorman/CanonicalLean},
   doi = {10.4230/artifacts.24708},
}
Document
Canonical for Automated Theorem Proving in Lean

Authors: Chase Norman and Jeremy Avigad

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Canonical is a solver for type inhabitation in dependent type theory, that is, the problem of producing a term of a given type. We present a Lean tactic which invokes Canonical to generate proof terms and synthesize programs. The tactic supports higher-order and dependently-typed goals, structural recursion over indexed inductive types, and definitional equality. Canonical finds proofs for 84% of Natural Number Game problems in 51 seconds total.

Cite as

Chase Norman and Jeremy Avigad. Canonical for Automated Theorem Proving in Lean. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{norman_et_al:LIPIcs.ITP.2025.14,
  author =	{Norman, Chase and Avigad, Jeremy},
  title =	{{Canonical for Automated Theorem Proving in Lean}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.14},
  URN =		{urn:nbn:de:0030-drops-246128},
  doi =		{10.4230/LIPIcs.ITP.2025.14},
  annote =	{Keywords: Automated Reasoning, Interactive Theorem Proving, Dependent Type Theory, Inhabitation, Unification, Program Synthesis, Formal Methods}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail