Search Results

Documents authored by Panova, Greta


Document
Track A: Algorithms, Complexity and Games
On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions

Authors: Julian Dörfler, Christian Ikenmeyer, and Greta Panova

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Geometric Complexity Theory as initiated by Mulmuley and Sohoni in two papers (SIAM J Comput 2001, 2008) aims to separate algebraic complexity classes via representation theoretic multiplicities in coordinate rings of specific group varieties. We provide the first toy setting in which a separation can be achieved for a family of polynomials via these multiplicities. Mulmuley and Sohoni’s papers also conjecture that the vanishing behavior of multiplicities would be sufficient to separate complexity classes (so-called occurrence obstructions). The existence of such strong occurrence obstructions has been recently disproven in 2016 in two successive papers, Ikenmeyer-Panova (Adv. Math.) and Bürgisser-Ikenmeyer-Panova (J. AMS). This raises the question whether separating group varieties via representation theoretic multiplicities is stronger than separating them via occurrences. We provide first finite settings where a separation via multiplicities can be achieved, while the separation via occurrences is provably impossible. These settings are surprisingly simple and natural: We study the variety of products of homogeneous linear forms (the so-called Chow variety) and the variety of polynomials of bounded border Waring rank (i.e. a higher secant variety of the Veronese variety). As a side result we prove a slight generalization of Hermite’s reciprocity theorem, which proves Foulkes' conjecture for a new infinite family of cases.

Cite as

Julian Dörfler, Christian Ikenmeyer, and Greta Panova. On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 51:1-51:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dorfler_et_al:LIPIcs.ICALP.2019.51,
  author =	{D\"{o}rfler, Julian and Ikenmeyer, Christian and Panova, Greta},
  title =	{{On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{51:1--51:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.51},
  URN =		{urn:nbn:de:0030-drops-106276},
  doi =		{10.4230/LIPIcs.ICALP.2019.51},
  annote =	{Keywords: Algebraic complexity theory, geometric complexity theory, Waring rank, plethysm coefficients, occurrence obstructions, multiplicity obstructions}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail