Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)
Julian Dörfler, Christian Ikenmeyer, and Greta Panova. On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 51:1-51:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{dorfler_et_al:LIPIcs.ICALP.2019.51, author = {D\"{o}rfler, Julian and Ikenmeyer, Christian and Panova, Greta}, title = {{On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {51:1--51:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.51}, URN = {urn:nbn:de:0030-drops-106276}, doi = {10.4230/LIPIcs.ICALP.2019.51}, annote = {Keywords: Algebraic complexity theory, geometric complexity theory, Waring rank, plethysm coefficients, occurrence obstructions, multiplicity obstructions} }
Feedback for Dagstuhl Publishing