Search Results

Documents authored by Pasch, Matija


Document
Inference and Mutual Information on Random Factor Graphs

Authors: Amin Coja-Oghlan, Max Hahn-Klimroth, Philipp Loick, Noela Müller, Konstantinos Panagiotou, and Matija Pasch

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
Random factor graphs provide a powerful framework for the study of inference problems such as decoding problems or the stochastic block model. Information-theoretically the key quantity of interest is the mutual information between the observed factor graph and the underlying ground truth around which the factor graph was created; in the stochastic block model, this would be the planted partition. The mutual information gauges whether and how well the ground truth can be inferred from the observable data. For a very general model of random factor graphs we verify a formula for the mutual information predicted by physics techniques. As an application we prove a conjecture about low-density generator matrix codes from [Montanari: IEEE Transactions on Information Theory 2005]. Further applications include phase transitions of the stochastic block model and the mixed k-spin model from physics.

Cite as

Amin Coja-Oghlan, Max Hahn-Klimroth, Philipp Loick, Noela Müller, Konstantinos Panagiotou, and Matija Pasch. Inference and Mutual Information on Random Factor Graphs. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cojaoghlan_et_al:LIPIcs.STACS.2021.24,
  author =	{Coja-Oghlan, Amin and Hahn-Klimroth, Max and Loick, Philipp and M\"{u}ller, Noela and Panagiotou, Konstantinos and Pasch, Matija},
  title =	{{Inference and Mutual Information on Random Factor Graphs}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.24},
  URN =		{urn:nbn:de:0030-drops-136692},
  doi =		{10.4230/LIPIcs.STACS.2021.24},
  annote =	{Keywords: Information theory, random factor graphs, inference problems, phase transitions}
}
Document
Track A: Algorithms, Complexity and Games
Satisfiability Thresholds for Regular Occupation Problems

Authors: Konstantinos Panagiotou and Matija Pasch

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
In the last two decades the study of random instances of constraint satisfaction problems (CSPs) has flourished across several disciplines, including computer science, mathematics and physics. The diversity of the developed methods, on the rigorous and non-rigorous side, has led to major advances regarding both the theoretical as well as the applied viewpoints. The two most popular types of such CSPs are the Erdős-Rényi and the random regular CSPs. Based on a ceteris paribus approach in terms of the density evolution equations known from statistical physics, we focus on a specific prominent class of problems of the latter type, the so-called occupation problems. The regular r-in-k occupation problems resemble a basis of this class. By now, out of these CSPs only the satisfiability threshold - the largest degree for which the problem admits asymptotically a solution - for the 1-in-k occupation problem has been rigorously established. In the present work we take a general approach towards a systematic analysis of occupation problems. In particular, we discover a surprising and explicit connection between the 2-in-k occupation problem satisfiability threshold and the determination of contraction coefficients, an important quantity in information theory measuring the loss of information that occurs when communicating through a noisy channel. We present methods to facilitate the computation of these coefficients and use them to establish explicitly the threshold for the 2-in-k occupation problem for k=4. Based on this result, for general k >= 5 we formulate a conjecture that pins down the exact value of the corresponding coefficient, which, if true, is shown to determine the threshold in all these cases.

Cite as

Konstantinos Panagiotou and Matija Pasch. Satisfiability Thresholds for Regular Occupation Problems. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 90:1-90:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{panagiotou_et_al:LIPIcs.ICALP.2019.90,
  author =	{Panagiotou, Konstantinos and Pasch, Matija},
  title =	{{Satisfiability Thresholds for Regular Occupation Problems}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{90:1--90:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.90},
  URN =		{urn:nbn:de:0030-drops-106665},
  doi =		{10.4230/LIPIcs.ICALP.2019.90},
  annote =	{Keywords: Constraint satisfaction problem, replica symmetric, contraction coefficient, first moment, second moment, small subgraph conditioning}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail