Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)
Zhan Peng and Ryo Inoue. Moran Eigenvectors-Based Spatial Heterogeneity Analysis for Compositional Data (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 59:1-59:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{peng_et_al:LIPIcs.GIScience.2023.59,
author = {Peng, Zhan and Inoue, Ryo},
title = {{Moran Eigenvectors-Based Spatial Heterogeneity Analysis for Compositional Data}},
booktitle = {12th International Conference on Geographic Information Science (GIScience 2023)},
pages = {59:1--59:6},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-288-4},
ISSN = {1868-8969},
year = {2023},
volume = {277},
editor = {Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.59},
URN = {urn:nbn:de:0030-drops-189540},
doi = {10.4230/LIPIcs.GIScience.2023.59},
annote = {Keywords: Compositional data analysis, Spatial heterogeneity, Moran eigenvectors}
}