Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)
Zhan Peng and Ryo Inoue. Moran Eigenvectors-Based Spatial Heterogeneity Analysis for Compositional Data (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 59:1-59:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{peng_et_al:LIPIcs.GIScience.2023.59, author = {Peng, Zhan and Inoue, Ryo}, title = {{Moran Eigenvectors-Based Spatial Heterogeneity Analysis for Compositional Data}}, booktitle = {12th International Conference on Geographic Information Science (GIScience 2023)}, pages = {59:1--59:6}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-288-4}, ISSN = {1868-8969}, year = {2023}, volume = {277}, editor = {Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.59}, URN = {urn:nbn:de:0030-drops-189540}, doi = {10.4230/LIPIcs.GIScience.2023.59}, annote = {Keywords: Compositional data analysis, Spatial heterogeneity, Moran eigenvectors} }
Feedback for Dagstuhl Publishing