Published in: OASIcs, Volume 136, 36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025)
Kélian Poujade, Louise Travé-Massuyès, Jérémy Pirard, and Laure Vieillevigne. Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis - Application to Radiotherapy Systems (PhD Panel). In 36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025). Open Access Series in Informatics (OASIcs), Volume 136, pp. 16:1-16:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{poujade_et_al:OASIcs.DX.2025.16,
author = {Poujade, K\'{e}lian and Trav\'{e}-Massuy\`{e}s, Louise and Pirard, J\'{e}r\'{e}my and Vieillevigne, Laure},
title = {{Unsupervised Multimodal Learning for Fault Diagnosis and Prognosis - Application to Radiotherapy Systems}},
booktitle = {36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025)},
pages = {16:1--16:17},
series = {Open Access Series in Informatics (OASIcs)},
ISBN = {978-3-95977-394-2},
ISSN = {2190-6807},
year = {2025},
volume = {136},
editor = {Quinones-Grueiro, Marcos and Biswas, Gautam and Pill, Ingo},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2025.16},
URN = {urn:nbn:de:0030-drops-248058},
doi = {10.4230/OASIcs.DX.2025.16},
annote = {Keywords: Artificial Intelligence, Diagnosis, Prognosis, Radiotherapy machines}
}