Search Results

Documents authored by Przytycka, Teresa M.


Document
Improved Algorithms for Bi-Partition Function Computation

Authors: John D. Bridgers, Jan Hoinka, S. Cenk Sahinalp, Salem Malikic, Teresa M. Przytycka, and Funda Ergun

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
The evolutionary history of a tumor, inferred from single-cell sequencing data, is typically represented as a tree in which each subtree corresponds to a clade of cells seeded by a specific set of mutations. Traditional methods typically identify a single most likely tree for downstream analyses, such as detecting driver mutations, studying mutation co-occurrence patterns and identifying common evolutionary trajectories. However, the reliability of such inferred trees, particularly their topology, clade composition, and mutational placements, often remains uncertain. To quantify this uncertainty, the concept of a Bi-partition Function was recently introduced, providing a probabilistic measure of how reliably a mutation seeds a given clade of cells. The single available algorithm for estimating the Bi-partition Function relies on simplifying assumptions and uses sampling for limited exploration of the tree-space. In this paper, we introduce the first exact algorithm for computing the Bi-partition Function. Our algorithm scales linearly with the number of mutations but exhibits super-exponential complexity with respect to the number of cells. Despite this complexity, it establishes crucial ground truth values, essential for accurately benchmarking and validating approximate methods. Additionally, we present a GPU-accelerated version of the available sampling-based algorithm, significantly boosting the computational performance through large-scale parallelization, enabling more accurate Bi-partition Function estimates via deeper exploration of the tree spaces. We compare our methods on synthetic datasets, demonstrating that especially when the number of mutations sufficiently exceed the number of cells, our GPU-accelerated sampling algorithm closely approximates the exact ground truth values.

Cite as

John D. Bridgers, Jan Hoinka, S. Cenk Sahinalp, Salem Malikic, Teresa M. Przytycka, and Funda Ergun. Improved Algorithms for Bi-Partition Function Computation. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 5:1-5:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bridgers_et_al:LIPIcs.WABI.2025.5,
  author =	{Bridgers, John D. and Hoinka, Jan and Sahinalp, S. Cenk and Malikic, Salem and Przytycka, Teresa M. and Ergun, Funda},
  title =	{{Improved Algorithms for Bi-Partition Function Computation}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{5:1--5:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.5},
  URN =		{urn:nbn:de:0030-drops-239318},
  doi =		{10.4230/LIPIcs.WABI.2025.5},
  annote =	{Keywords: Tumor Evolution, Bi-partition Function, Single-Cell Sequencing, Algorithms}
}
Document
Mutational Signature Refitting on Sparse Pan-Cancer Data

Authors: Gal Gilad, Teresa M. Przytycka, and Roded Sharan

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
Mutational processes shape cancer genomes, leaving characteristic marks that are termed signatures. The level of activity of each such process, or its signature exposure, provides important information on the disease, improving patient stratification and the prediction of drug response. Thus, there is growing interest in developing refitting methods that decipher those exposures. Previous work in this domain was unsupervised in nature, employing algebraic decomposition and probabilistic inference methods. Here we provide a supervised approach to the problem of signature refitting and show its superiority over current methods. Our method, SuRe, leverages a neural network model to capture correlations between signature exposures in real data. We show that SuRe outperforms previous methods on sparse mutation data from tumor type specific data sets, as well as pan-cancer data sets, with an increasing advantage as the data become sparser. We further demonstrate its utility in clinical settings.

Cite as

Gal Gilad, Teresa M. Przytycka, and Roded Sharan. Mutational Signature Refitting on Sparse Pan-Cancer Data. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gilad_et_al:LIPIcs.WABI.2025.11,
  author =	{Gilad, Gal and Przytycka, Teresa M. and Sharan, Roded},
  title =	{{Mutational Signature Refitting on Sparse Pan-Cancer Data}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.11},
  URN =		{urn:nbn:de:0030-drops-239374},
  doi =		{10.4230/LIPIcs.WABI.2025.11},
  annote =	{Keywords: mutational signatures, signature refitting, cancer genomics, genomic data analysis, somatic mutations}
}
Document
Invited Talk
Algorithmic Approaches to Study Mutational Processes in Cancer (Invited Talk)

Authors: Teresa M. Przytycka

Published in: LIPIcs, Volume 273, 23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)


Abstract
Mutations are the driving force of evolution, yet they underlie many diseases and, in particular, cancer. They are thought to arise from a combination of stochastic errors in DNA processing, naturally occurring DNA damage (e.g., the spontaneous deamination of methylated CpG sites), replication errors, carcinogenic exposures or cancer related aberrations of DNA maintenance machinery. These processes often lead to distinctive patterns of mutations, called "mutational signatures". Starting with the seminal work of Alexandrov at al. [Ludmil B Alexandrov et al., 2013] several computational approaches have been developed to uncover such mutational signatures. However connecting mutational signatures to mutational processes is not always easy [Kim et al., 2021]. To gain insights into the relationships between mutational processes and computationally derived somatic mutation patterns (mutational signatures), we developed several complementary approaches that leverage different algorithmic techniques allowing us to link such patterns to their potential causes. For example, to investigate the genetic aberrations associated with mutational signatures, we took a network-based approach considering mutational signatures as phenotypes. Specifically, our analysis aims to answer the following two complementary questions: (i) what are functional pathways whose gene expression activities correlate with the strengths of mutational signatures, and (ii) are there pathways whose genetic alterations might have led to specific mutational signatures? To identify mutated pathways, we adopted an optimization method based on integer linear programming. Analyzing a breast cancer dataset, we identified pathways associated with mutational signatures on both expression and mutation levels. Our analysis captured important differences in the etiology of the APOBEC related signatures and the two clock-like signatures. In particular, it revealed that clustered and dispersed APOBEC mutations may be caused by different mutagenic processes. In addition, our analysis elucidated differences between two age related signatures - one of the signatures is correlated with the expression of cell cycle genes while the other has no such correlation but shows patterns consistent with the exposure to environmental/external processes [Kim et al., 2020]. Complementing this approach, we also developed a network-based method, named GENESIGNET that constructs an influence/information flow network connecting genes and mutational signatures [Amgalan et al., 2023]. The approach leverages sparse partial correlation among other statistical techniques to uncover dominant influence relations between the activities of network nodes. Applying GENESIGNET to cancer data sets, we uncovered important relations between mutational signatures and several cellular processes that can shed light on cancer-related processes. In particular, GENESIGNET exposed a link between the SBS8 signature of unknown etiology and the Nucleotide Excision Repair (NER) pathway. Linking mutational signatures to molecular features can help understand the etiology and develop personalized cancer therapy. However, due to the complex and dynamic nature of tumor evolution, untangling the cause and effect relationship can be challenging and requires further integrated and comprehensive analyses.

Cite as

Teresa M. Przytycka. Algorithmic Approaches to Study Mutational Processes in Cancer (Invited Talk). In 23rd International Workshop on Algorithms in Bioinformatics (WABI 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 273, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{przytycka:LIPIcs.WABI.2023.1,
  author =	{Przytycka, Teresa M.},
  title =	{{Algorithmic Approaches to Study Mutational Processes in Cancer}},
  booktitle =	{23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-294-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{273},
  editor =	{Belazzougui, Djamal and Ouangraoua, A\"{i}da},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2023.1},
  URN =		{urn:nbn:de:0030-drops-186278},
  doi =		{10.4230/LIPIcs.WABI.2023.1},
  annote =	{Keywords: Biological Networks, Cancer, Mutational Signatures, DNA Damage, DNA Repair}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail