Search Results

Documents authored by Rümmele, Stefan


Document
Barrier Coverage with Non-uniform Lengths to Minimize Aggregate Movements

Authors: Serge Gaspers, Joachim Gudmundsson, Julián Mestre, and Stefan Rümmele

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
Given a line segment I=[0,L], the so-called barrier, and a set of n sensors with varying ranges positioned on the line containing I, the barrier coverage problem is to move the sensors so that they cover I, while minimising the total movement. In the case when all the sensors have the same radius the problem can be solved in O(n log n) time (Andrews and Wang, Algorithmica 2017). If the sensors have different radii the problem is known to be NP-hard to approximate within a constant factor (Czyzowicz et al., ADHOC-NOW 2009). We strengthen this result and prove that no polynomial time \rho^{1-\epsilon}-approximation algorithm exists unless P=NP, where \rho is the ratio between the largest radius and the smallest radius. Even when we restrict the number of sensors that are allowed to move by a parameter k, the problem turns out to be W[1]-hard. On the positive side we show that a ((2+\epsilon)\rho+2/\epsilon)-approximation can be computed in O(n^3/\epsilon^2) time and we prove fixed-parameter tractability when parameterized by the total movement assuming all numbers in the input are integers.

Cite as

Serge Gaspers, Joachim Gudmundsson, Julián Mestre, and Stefan Rümmele. Barrier Coverage with Non-uniform Lengths to Minimize Aggregate Movements. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 37:1-37:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gaspers_et_al:LIPIcs.ISAAC.2017.37,
  author =	{Gaspers, Serge and Gudmundsson, Joachim and Mestre, Juli\'{a}n and R\"{u}mmele, Stefan},
  title =	{{Barrier Coverage with Non-uniform Lengths to Minimize Aggregate Movements}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{37:1--37:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.37},
  URN =		{urn:nbn:de:0030-drops-82591},
  doi =		{10.4230/LIPIcs.ISAAC.2017.37},
  annote =	{Keywords: Barrier coverage, Sensor movement, Approximation, Parameterized complexity}
}
Document
The Parameterized Complexity of Positional Games

Authors: Édouard Bonnet, Serge Gaspers, Antonin Lambilliotte, Stefan Rümmele, and Abdallah Saffidine

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We study the parameterized complexity of several positional games. Our main result is that Short Generalized Hex is W[1]-complete parameterized by the number of moves. This solves an open problem from Downey and Fellows’ influential list of open problems from 1999. Previously, the problem was thought of as a natural candidate for AW[*]-completeness. Our main tool is a new fragment of first-order logic where universally quantified variables only occur in inequalities. We show that model-checking on arbitrary relational structures for a formula in this fragment is W[1]-complete when parameterized by formula size. We also consider a general framework where a positional game is represented as a hypergraph and two players alternately pick vertices. In a Maker-Maker game, the first player to have picked all the vertices of some hyperedge wins the game. In a Maker-Breaker game, the first player wins if she picks all the vertices of some hyperedge, and the second player wins otherwise. In an Enforcer-Avoider game, the first player wins if the second player picks all the vertices of some hyperedge, and the second player wins otherwise. Short Maker-Maker, Short Maker-Breaker, and Short Enforcer-Avoider are respectively AW[*]-, W[1]-, and co-W[1]-complete parameterized by the number of moves. This suggests a rough parameterized complexity categorization into positional games that are complete for the first level of the W-hierarchy when the winning condition only depends on which vertices one player has been able to pick, but AW[*]-complete when it depends on which vertices both players have picked. However, some positional games with highly structured board and winning configurations are fixed-parameter tractable. We give another example of such a game, Short k-Connect, which is fixed-parameter tractable when parameterized by the number of moves.

Cite as

Édouard Bonnet, Serge Gaspers, Antonin Lambilliotte, Stefan Rümmele, and Abdallah Saffidine. The Parameterized Complexity of Positional Games. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 90:1-90:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ICALP.2017.90,
  author =	{Bonnet, \'{E}douard and Gaspers, Serge and Lambilliotte, Antonin and R\"{u}mmele, Stefan and Saffidine, Abdallah},
  title =	{{The Parameterized Complexity of Positional Games}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{90:1--90:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.90},
  URN =		{urn:nbn:de:0030-drops-74941},
  doi =		{10.4230/LIPIcs.ICALP.2017.90},
  annote =	{Keywords: Hex, Maker-Maker games, Maker-Breaker games, Enforcer-Avoider games, parameterized complexity theory}
}
Document
Turbocharging Treewidth Heuristics

Authors: Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rümmele

Published in: LIPIcs, Volume 63, 11th International Symposium on Parameterized and Exact Computation (IPEC 2016)


Abstract
A widely used class of algorithms for computing tree decompositions of graphs are heuristics that compute an elimination order, i.e., a permutation of the vertex set. In this paper, we propose to turbocharge these heuristics. For a target treewidth k, suppose the heuristic has already computed a partial elimination order of width at most k, but extending it by one more vertex exceeds the target width k. At this moment of regret, we solve a subproblem which is to recompute the last c positions of the partial elimination order such that it can be extended without exceeding width k. We show that this subproblem is fixed-parameter tractable when parameterized by k and c, but it is para-NP-hard and W[1]-hard when parameterized by only k or c, respectively. Our experimental evaluation of the FPT algorithm shows that we can trade a reasonable increase of the running time for quality of the solution.

Cite as

Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rümmele. Turbocharging Treewidth Heuristics. In 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 63, pp. 13:1-13:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gaspers_et_al:LIPIcs.IPEC.2016.13,
  author =	{Gaspers, Serge and Gudmundsson, Joachim and Jones, Mitchell and Mestre, Juli\'{a}n and R\"{u}mmele, Stefan},
  title =	{{Turbocharging Treewidth Heuristics}},
  booktitle =	{11th International Symposium on Parameterized and Exact Computation (IPEC 2016)},
  pages =	{13:1--13:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-023-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{63},
  editor =	{Guo, Jiong and Hermelin, Danny},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2016.13},
  URN =		{urn:nbn:de:0030-drops-69322},
  doi =		{10.4230/LIPIcs.IPEC.2016.13},
  annote =	{Keywords: tree decomposition, heuristic, fixed-parameter tractability, local search}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail