Search Results

Documents authored by Rechberger, Christian


Document
Cache Timing Leakages in Zero-Knowledge Protocols

Authors: Shibam Mukherjee, Christian Rechberger, and Markus Schofnegger

Published in: LIPIcs, Volume 354, 7th Conference on Advances in Financial Technologies (AFT 2025)


Abstract
The area of modern zero-knowledge proof systems has seen a significant rise in popularity over the last couple of years, with new techniques and optimized constructions emerging on a regular basis. As the field matures, the aspect of implementation attacks becomes more relevant, however side-channel attacks on zero-knowledge proof systems have seen surprisingly little treatment so far. In this paper, we give an overview of potential attack vectors and show that some of the underlying finite field libraries, and implementations of heavily used components like hash functions using them, are vulnerable w.r.t. cache attacks on CPUs. On the positive side, we demonstrate that the computational overhead to protect against these attacks is relatively small.

Cite as

Shibam Mukherjee, Christian Rechberger, and Markus Schofnegger. Cache Timing Leakages in Zero-Knowledge Protocols. In 7th Conference on Advances in Financial Technologies (AFT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 354, pp. 1:1-1:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mukherjee_et_al:LIPIcs.AFT.2025.1,
  author =	{Mukherjee, Shibam and Rechberger, Christian and Schofnegger, Markus},
  title =	{{Cache Timing Leakages in Zero-Knowledge Protocols}},
  booktitle =	{7th Conference on Advances in Financial Technologies (AFT 2025)},
  pages =	{1:1--1:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-400-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{354},
  editor =	{Avarikioti, Zeta and Christin, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2025.1},
  URN =		{urn:nbn:de:0030-drops-247201},
  doi =		{10.4230/LIPIcs.AFT.2025.1},
  annote =	{Keywords: zero-knowledge, protocol, cache timing, side-channel, leakage}
}
Document
Grøstl - a SHA-3 candidate

Authors: Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen

Published in: Dagstuhl Seminar Proceedings, Volume 9031, Symmetric Cryptography (2009)


Abstract
Grøstl is a SHA-3 candidate proposal. Grøstl is an iterated hash function with a compression function built from two fixed, large, distinct permutations. The design of Grøstl is transparent and based on principles very different from those used in the SHA-family. The two permutations are constructed using the wide trail design strategy, which makes it possible to give strong statements about the resistance of Grøstl against large classes of cryptanalytic attacks. Moreover, if these permutations are assumed to be ideal, there is a proof for the security of the hash function. Grøstl is a byte-oriented SP-network which borrows components from the AES. The S-box used is identical to the one used in the block cipher AES and the diffusion layers are constructed in a similar manner to those of the AES. As a consequence there is a very strong confusion and diffusion in Grøstl. Grøstl is a so-called wide-pipe construction where the size of the internal state is significantly larger than the size of the output. This has the effect that all known, generic attacks on the hash function are made much more difficult. Grøstl has good performance on a wide range of platforms and counter-measures against side-channel attacks are well-understood from similar work on the AES.

Cite as

Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl - a SHA-3 candidate. In Symmetric Cryptography. Dagstuhl Seminar Proceedings, Volume 9031, pp. 1-33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{gauravaram_et_al:DagSemProc.09031.7,
  author =	{Gauravaram, Praveen and Knudsen, Lars R. and Matusiewicz, Krystian and Mendel, Florian and Rechberger, Christian and Schl\"{a}ffer, Martin and Thomsen, S{\o}ren S.},
  title =	{{Gr{\o}stl - a SHA-3 candidate}},
  booktitle =	{Symmetric Cryptography},
  pages =	{1--33},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{9031},
  editor =	{Helena Handschuh and Stefan Lucks and Bart Preneel and Phillip Rogaway},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09031.7},
  URN =		{urn:nbn:de:0030-drops-19554},
  doi =		{10.4230/DagSemProc.09031.7},
  annote =	{Keywords: SHA-3 proposal, hash function}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail