Search Results

Documents authored by Richter, Marena


Document
Property Testing of Curve Similarity

Authors: Peyman Afshani, Maike Buchin, Anne Driemel, Marena Richter, and Sampson Wong

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We propose sublinear algorithms for probabilistic testing of the discrete and continuous Fréchet distance - a standard similarity measure for curves. We assume the algorithm is given access to the input curves via a query oracle: a query returns the set of vertices of the curve that lie within a radius δ of a specified vertex of the other curve. The goal is to use a small number of queries to determine with constant probability whether the two curves are similar (i.e., their discrete Fréchet distance is at most δ) or they are "ε-far" (for 0 < ε < 2) from being similar, i.e., more than an ε-fraction of the two curves must be ignored for them to become similar. We present two algorithms which are sublinear assuming that the curves are t-approximate shortest paths in the ambient metric space, for some t ≪ n. The first algorithm uses O(t/ε log t/ε) queries and is given the value of t in advance. The second algorithm does not have explicit knowledge of the value of t and therefore needs to gain implicit knowledge of the straightness of the input curves through its queries. We show that the discrete Fréchet distance can still be tested using roughly O({t³+t² log n}/ε) queries ignoring logarithmic factors in t. Our algorithms work in a matrix representation of the input and may be of independent interest to matrix testing. Our algorithms use a mild uniform sampling condition that constrains the edge lengths of the curves, similar to a polynomially bounded aspect ratio. Applied to testing the continuous Fréchet distance of t-straight curves, our algorithms can be used for (1+ε')-approximate testing using essentially the same bounds as stated above with an additional factor of poly(1/(ε')).

Cite as

Peyman Afshani, Maike Buchin, Anne Driemel, Marena Richter, and Sampson Wong. Property Testing of Curve Similarity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 84:1-84:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.ESA.2025.84,
  author =	{Afshani, Peyman and Buchin, Maike and Driemel, Anne and Richter, Marena and Wong, Sampson},
  title =	{{Property Testing of Curve Similarity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{84:1--84:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.84},
  URN =		{urn:nbn:de:0030-drops-245522},
  doi =		{10.4230/LIPIcs.ESA.2025.84},
  annote =	{Keywords: Fr\'{e}chet distance, Trajectory Analysis, Curve Similarity, Property Testing, Monotonicity Testing}
}
Document
Transforming Dogs on the Line: On the Fréchet Distance Under Translation or Scaling in 1D

Authors: Lotte Blank, Jacobus Conradi, Anne Driemel, Benedikt Kolbe, André Nusser, and Marena Richter

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
The Fréchet distance is a computational mainstay for comparing polygonal curves. The Fréchet distance under translation, which is a translation invariant version, considers the similarity of two curves independent of their location in space. It is defined as the minimum Fréchet distance that arises from allowing arbitrary translations of the input curves. This problem and numerous variants of the Fréchet distance under some transformations have been studied, with more work concentrating on the discrete Fréchet distance, leaving a significant gap between the discrete and continuous versions of the Fréchet distance under transformations. Our contribution is twofold: First, we present an algorithm for the Fréchet distance under translation on 1-dimensional curves of complexity n with a running time of 𝒪(n^{8/3} log³ n). To achieve this, we develop a novel framework for the problem for 1-dimensional curves, which also applies to other scenarios and leads to our second contribution. We present an algorithm with the same running time of 𝒪(n^{8/3} log³ n) for the Fréchet distance under scaling for 1-dimensional curves. For both algorithms we match the running times of the discrete case and improve the previously best known bounds of 𝒪̃(n⁴). Our algorithms rely on technical insights but are conceptually simple, essentially reducing the continuous problem to the discrete case across different length scales.

Cite as

Lotte Blank, Jacobus Conradi, Anne Driemel, Benedikt Kolbe, André Nusser, and Marena Richter. Transforming Dogs on the Line: On the Fréchet Distance Under Translation or Scaling in 1D. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 22:1-22:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{blank_et_al:LIPIcs.SoCG.2025.22,
  author =	{Blank, Lotte and Conradi, Jacobus and Driemel, Anne and Kolbe, Benedikt and Nusser, Andr\'{e} and Richter, Marena},
  title =	{{Transforming Dogs on the Line: On the Fr\'{e}chet Distance Under Translation or Scaling in 1D}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{22:1--22:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.22},
  URN =		{urn:nbn:de:0030-drops-231746},
  doi =		{10.4230/LIPIcs.SoCG.2025.22},
  annote =	{Keywords: Fr\'{e}chet distance under translation, Fr\'{e}chet distance under scaling, time series, shape matching}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail