Search Results

Documents authored by Risse, Kilian


Document
Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

Authors: Per Austrin and Kilian Risse

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We prove lower bounds for the Minimum Circuit Size Problem (MCSP) in the Sum-of-Squares (SoS) proof system. Our main result is that for every Boolean function f: {0,1}ⁿ → {0,1}, SoS requires degree Ω(s^{1-ε}) to prove that f does not have circuits of size s (for any s > poly(n)). As a corollary we obtain that there are no low degree SoS proofs of the statement NP ⊈ P/poly. We also show that for any 0 < α < 1 there are Boolean functions with circuit complexity larger than 2^{n^α} but SoS requires size 2^{2^Ω(n^α)} to prove this. In addition we prove analogous results on the minimum monotone circuit size for monotone Boolean slice functions. Our approach is quite general. Namely, we show that if a proof system Q has strong enough constraint satisfaction problem lower bounds that only depend on good expansion of the constraint-variable incidence graph and, furthermore, Q is expressive enough that variables can be substituted by local Boolean functions, then the MCSP problem is hard for Q.

Cite as

Per Austrin and Kilian Risse. Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 31:1-31:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{austrin_et_al:LIPIcs.CCC.2023.31,
  author =	{Austrin, Per and Risse, Kilian},
  title =	{{Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{31:1--31:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.31},
  URN =		{urn:nbn:de:0030-drops-183011},
  doi =		{10.4230/LIPIcs.CCC.2023.31},
  annote =	{Keywords: Proof Complexity, Sum of Squares, Minimum Circuit Size Problem}
}
Document
Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs

Authors: Susanna F. de Rezende, Jakob Nordström, Kilian Risse, and Dmitry Sokolov

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson '01] and highly unbalanced, dense graphs as in [Raz '04] and [Razborov '03, '04]. We obtain our results by revisiting Razborov’s pseudo-width method for PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the power of the pseudo-width method, and we believe it could potentially be useful for attacking also other longstanding open problems for resolution and other proof systems.

Cite as

Susanna F. de Rezende, Jakob Nordström, Kilian Risse, and Dmitry Sokolov. Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 28:1-28:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{derezende_et_al:LIPIcs.CCC.2020.28,
  author =	{de Rezende, Susanna F. and Nordstr\"{o}m, Jakob and Risse, Kilian and Sokolov, Dmitry},
  title =	{{Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{28:1--28:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.28},
  URN =		{urn:nbn:de:0030-drops-125804},
  doi =		{10.4230/LIPIcs.CCC.2020.28},
  annote =	{Keywords: proof complexity, resolution, weak pigeonhole principle, perfect matching, sparse graphs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail