Search Results

Documents authored by Rivera Cardoso, Ricardo


Document
Quantum SAT Problems with Finite Sets of Projectors Are Complete for a Plethora of Classes

Authors: Ricardo Rivera Cardoso, Alex Meiburg, and Daniel Nagaj

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
Previously, all known variants of the Quantum Satisfiability (QSAT) problem - consisting of determining whether a k-local (k-body) Hamiltonian is frustration-free - could be classified as being either in 𝖯; or complete for NP, MA, or QMA₁. Here, we present new qubit variants of this problem that are complete for BQP₁, coRP, QCMA, PI(coRP,NP), PI(BQP₁,NP), PI(BQP₁,MA), SoPU(coRP,NP), SoPU(BQP₁,NP), and SoPU(BQP₁,MA). Our result implies that a complete classification of quantum constraint satisfaction problems (QCSPs), analogous to Schaefer’s dichotomy theorem for classical CSPs, must either include these 13 classes, or otherwise show that some are equal. Additionally, our result showcases two new types of QSAT problems that can be decided efficiently, as well as the first nontrivial BQP₁-complete problem. We first construct QSAT problems on qudits that are complete for BQP₁, coRP, and QCMA. These are made by restricting the finite set of Hamiltonians to consist of elements similar to H_{init}, H_{prop}, and H_{out}, seen in the circuit-to-Hamiltonian transformation. Usually, these are used to demonstrate hardness of QSAT and Local Hamiltonian problems, and so our proofs of hardness are simple. The difficulty lies in ensuring that all Hamiltonians generated with these three elements can be decided in their respective classes. For this, we build our Hamiltonian terms with high-dimensional data and clock qudits, ternary logic, and either monogamy of entanglement or specific clock encodings. We then show how to express these problems in terms of qubits, by proving that any QCSP can be reduced to a qubit problem while maintaining the same complexity - something not believed possible classically. The remaining six problems are obtained by considering "sums" and "products" of some of the QSAT problems mentioned here. Before this work, the QSAT problems generated in this way resulted in complete problems for PI and SoPU classes that were trivially equal to NP, MA, or QMA₁. We thus commence the study of these new and seemingly nontrivial classes. While [Meiburg, 2021] first sought to prove completeness for coRP, BQP₁, and QCMA, we note that those constructions are flawed. Here, we rework them, provide correct proofs, and obtain improvements on the required qudit dimensionality.

Cite as

Ricardo Rivera Cardoso, Alex Meiburg, and Daniel Nagaj. Quantum SAT Problems with Finite Sets of Projectors Are Complete for a Plethora of Classes. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 6:1-6:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{riveracardoso_et_al:LIPIcs.TQC.2025.6,
  author =	{Rivera Cardoso, Ricardo and Meiburg, Alex and Nagaj, Daniel},
  title =	{{Quantum SAT Problems with Finite Sets of Projectors Are Complete for a Plethora of Classes}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{6:1--6:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.6},
  URN =		{urn:nbn:de:0030-drops-240557},
  doi =		{10.4230/LIPIcs.TQC.2025.6},
  annote =	{Keywords: Quantum complexity theory, quantum satisfiability, circuit-to-Hamiltonian, pairwise union of classes, pairwise intersection of classes}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail