Search Results

Documents authored by Rozhoň, Václav


Document
Noisy k-Means++ Revisited

Authors: Christoph Grunau, Ahmet Alper Özüdoğru, and Václav Rozhoň

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
The k-means++ algorithm by Arthur and Vassilvitskii [SODA 2007] is a classical and time-tested algorithm for the k-means problem. While being very practical, the algorithm also has good theoretical guarantees: its solution is O(log k)-approximate, in expectation. In a recent work, Bhattacharya, Eube, Roglin, and Schmidt [ESA 2020] considered the following question: does the algorithm retain its guarantees if we allow for a slight adversarial noise in the sampling probability distributions used by the algorithm? This is motivated e.g. by the fact that computations with real numbers in k-means++ implementations are inexact. Surprisingly, the analysis under this scenario gets substantially more difficult and the authors were able to prove only a weaker approximation guarantee of O(log² k). In this paper, we close the gap by providing a tight, O(log k)-approximate guarantee for the k-means++ algorithm with noise.

Cite as

Christoph Grunau, Ahmet Alper Özüdoğru, and Václav Rozhoň. Noisy k-Means++ Revisited. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 55:1-55:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{grunau_et_al:LIPIcs.ESA.2023.55,
  author =	{Grunau, Christoph and \"{O}z\"{u}do\u{g}ru, Ahmet Alper and Rozho\v{n}, V\'{a}clav},
  title =	{{Noisy k-Means++ Revisited}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{55:1--55:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.55},
  URN =		{urn:nbn:de:0030-drops-187080},
  doi =		{10.4230/LIPIcs.ESA.2023.55},
  annote =	{Keywords: clustering, k-means, k-means++, adversarial noise}
}
Document
Local Problems on Trees from the Perspectives of Distributed Algorithms, Finitary Factors, and Descriptive Combinatorics

Authors: Sebastian Brandt, Yi-Jun Chang, Jan Grebík, Christoph Grunau, Václav Rozhoň, and Zoltán Vidnyánszky

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We study connections between three different fields: distributed local algorithms, finitary factors of iid processes, and descriptive combinatorics. We focus on two central questions: Can we apply techniques from one of the areas to obtain results in another? Can we show that complexity classes coming from different areas contain precisely the same problems? We give an affirmative answer to both questions in the context of local problems on regular trees: 1) We extend the Borel determinacy technique of Marks [Marks - J. Am. Math. Soc. 2016] coming from descriptive combinatorics and adapt it to the area of distributed computing, thereby obtaining a more generally applicable lower bound technique in descriptive combinatorics and an entirely new lower bound technique for distributed algorithms. Using our new technique, we prove deterministic distributed Ω(log n)-round lower bounds for problems from a natural class of homomorphism problems. Interestingly, these lower bounds seem beyond the current reach of the powerful round elimination technique [Brandt - PODC 2019] responsible for all substantial locality lower bounds of the last years. Our key technical ingredient is a novel ID graph technique that we expect to be of independent interest; in fact, it has already played an important role in a new lower bound for the Lovász local lemma in the Local Computation Algorithms model from sequential computing [Brandt, Grunau, Rozhoň - PODC 2021]. 2) We prove that a local problem admits a Baire measurable coloring if and only if it admits a local algorithm with local complexity O(log n), extending the classification of Baire measurable colorings of Bernshteyn [Bernshteyn - personal communication]. A key ingredient of the proof is a new and simple characterization of local problems that can be solved in O(log n) rounds. We complement this result by showing separations between complexity classes from distributed computing, finitary factors, and descriptive combinatorics. Most notably, the class of problems that allow a distributed algorithm with sublogarithmic randomized local complexity is incomparable with the class of problems with a Borel solution. We hope that our treatment will help to view all three perspectives as part of a common theory of locality, in which we follow the insightful paper of [Bernshteyn - arXiv 2004.04905].

Cite as

Sebastian Brandt, Yi-Jun Chang, Jan Grebík, Christoph Grunau, Václav Rozhoň, and Zoltán Vidnyánszky. Local Problems on Trees from the Perspectives of Distributed Algorithms, Finitary Factors, and Descriptive Combinatorics. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 29:1-29:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{brandt_et_al:LIPIcs.ITCS.2022.29,
  author =	{Brandt, Sebastian and Chang, Yi-Jun and Greb{\'\i}k, Jan and Grunau, Christoph and Rozho\v{n}, V\'{a}clav and Vidny\'{a}nszky, Zolt\'{a}n},
  title =	{{Local Problems on Trees from the Perspectives of Distributed Algorithms, Finitary Factors, and Descriptive Combinatorics}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{29:1--29:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.29},
  URN =		{urn:nbn:de:0030-drops-156259},
  doi =		{10.4230/LIPIcs.ITCS.2022.29},
  annote =	{Keywords: Distributed Algorithms, Descriptive Combinatorics}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail