Search Results

Documents authored by Schlomberg, Niklas


Document
Track A: Algorithms, Complexity and Games
An Improved Integrality Gap for Disjoint Cycles in Planar Graphs

Authors: Niklas Schlomberg

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present a new greedy rounding algorithm for the Cycle Packing Problem for uncrossable cycle families in planar graphs. This improves the best-known upper bound for the integrality gap of the natural packing LP to a constant slightly less than 3.5. Furthermore, the analysis works for both edge- and vertex-disjoint packing. The previously best-known constants were 4 for edge-disjoint and 5 for vertex-disjoint cycle packing. This result also immediately yields an improved Erdős-Pósa ratio: for any uncrossable cycle family in a planar graph, the minimum number of vertices (edges) needed to hit all cycles in the family is less than 8.38 times the maximum number of vertex-disjoint (edge-disjoint, respectively) cycles in the family. Some uncrossable cycle families of interest to which the result can be applied are the family of all cycles in a directed or undirected graph, in undirected graphs also the family of all odd cycles and the family of all cycles containing exactly one edge from a specified set of demand edges. The last example is an equivalent formulation of the fully planar Disjoint Paths Problem. Here the Erdős-Pósa ratio translates to a ratio between integral multi-commodity flows and minimum cuts.

Cite as

Niklas Schlomberg. An Improved Integrality Gap for Disjoint Cycles in Planar Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 122:1-122:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schlomberg:LIPIcs.ICALP.2024.122,
  author =	{Schlomberg, Niklas},
  title =	{{An Improved Integrality Gap for Disjoint Cycles in Planar Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{122:1--122:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.122},
  URN =		{urn:nbn:de:0030-drops-202651},
  doi =		{10.4230/LIPIcs.ICALP.2024.122},
  annote =	{Keywords: Cycle packing, planar graphs, disjoint paths}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail