Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)
Kuan Cheng, Minghui Ouyang, Chong Shangguan, and Yuanting Shen. When Can an Expander Code Correct Ω(n) Errors in O(n) Time?. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 61:1-61:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{cheng_et_al:LIPIcs.APPROX/RANDOM.2024.61, author = {Cheng, Kuan and Ouyang, Minghui and Shangguan, Chong and Shen, Yuanting}, title = {{When Can an Expander Code Correct \Omega(n) Errors in O(n) Time?}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)}, pages = {61:1--61:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-348-5}, ISSN = {1868-8969}, year = {2024}, volume = {317}, editor = {Kumar, Amit and Ron-Zewi, Noga}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.61}, URN = {urn:nbn:de:0030-drops-210543}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2024.61}, annote = {Keywords: expander codes, expander graphs, linear-time decoding} }
Feedback for Dagstuhl Publishing