Search Results

Documents authored by Shoham, Sharon


Document
Hyperproperty-Preserving Register Specifications

Authors: Yoav Ben Shimon, Ori Lahav, and Sharon Shoham

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
Reasoning about hyperproperties of concurrent implementations, such as the guarantees these implementations provide to randomized client programs, has been a long-standing challenge. Standard linearizability enables the use of atomic specifications for reasoning about standard properties, but not about hyperproperties. A stronger correctness criterion, called strong linearizability, enables such reasoning, but is rarely achievable, leaving various useful implementations with no means for reasoning about their hyperproperties. In this paper, we focus on registers and devise non-atomic specifications that capture a wide-range of well-studied register implementations and enable reasoning about their hyperproperties. First, we consider the class of write strong-linearizable implementations, a recently proposed useful weakening of strong linearizability, which allows more implementations, such as the well-studied single-writer ABD distributed implementation. We introduce a simple shared-memory register specification that can be used for reasoning about hyperproperties of programs that use write strongly-linearizable implementations. Second, we introduce a new linearizability class, which we call decisive linearizability, that is weaker than write strong-linearizability and includes multi-writer ABD, and develop a second shared-memory register specification for reasoning about hyperproperties of programs that use register implementations of this class. These results shed light on the hyperproperties guaranteed when simulating shared memory in a crash-resilient message-passing system.

Cite as

Yoav Ben Shimon, Ori Lahav, and Sharon Shoham. Hyperproperty-Preserving Register Specifications. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{benshimon_et_al:LIPIcs.DISC.2024.8,
  author =	{Ben Shimon, Yoav and Lahav, Ori and Shoham, Sharon},
  title =	{{Hyperproperty-Preserving Register Specifications}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{8:1--8:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.8},
  URN =		{urn:nbn:de:0030-drops-212630},
  doi =		{10.4230/LIPIcs.DISC.2024.8},
  annote =	{Keywords: Hyperproperties, Concurrent objects, Distributed objects, Linearizability, Strong linearizability, Simulation}
}
Document
Invited Talk
From Concept Learning to SAT-Based Invariant Inference (Invited Talk)

Authors: Sharon Shoham

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
In recent years SAT-based invariant inference algorithms such as interpolation-based model checking and PDR/IC3 have proven to be extremely successful in practice. However, the essence of their practical success and their performance guarantees are far less understood. This talk surveys results that establish formal connections and distinctions between SAT-based invariant inference and exact concept learning with queries, showing that learning techniques and algorithms can clarify foundational questions, illuminate existing algorithms, and suggest new directions for efficient invariant inference.

Cite as

Sharon Shoham. From Concept Learning to SAT-Based Invariant Inference (Invited Talk). In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, p. 4:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{shoham:LIPIcs.FSTTCS.2023.4,
  author =	{Shoham, Sharon},
  title =	{{From Concept Learning to SAT-Based Invariant Inference}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{4:1--4:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.4},
  URN =		{urn:nbn:de:0030-drops-193771},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.4},
  annote =	{Keywords: invariant inference, complexity, exact learning, interpolation, IC3}
}
Document
Order out of Chaos: Proving Linearizability Using Local Views

Authors: Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and Sharon Shoham

Published in: LIPIcs, Volume 121, 32nd International Symposium on Distributed Computing (DISC 2018)


Abstract
Proving the linearizability of highly concurrent data structures, such as those using optimistic concurrency control, is a challenging task. The main difficulty is in reasoning about the view of the memory obtained by the threads, because as they execute, threads observe different fragments of memory from different points in time. Until today, every linearizability proof has tackled this challenge from scratch. We present a unifying proof argument for the correctness of unsynchronized traversals, and apply it to prove the linearizability of several highly concurrent search data structures, including an optimistic self-balancing binary search tree, the Lazy List and a lock-free skip list. Our framework harnesses sequential reasoning about the view of a thread, considering the thread as if it traverses the data structure without interference from other operations. Our key contribution is showing that properties of reachability along search paths can be deduced for concurrent traversals from such interference-free traversals, when certain intuitive conditions are met. Basing the correctness of traversals on such local view arguments greatly simplifies linearizability proofs. At the heart of our result lies a notion of order on the memory, corresponding to the order in which locations in memory are read by the threads, which guarantees a certain notion of consistency between the view of the thread and the actual memory. To apply our framework, the user proves that the data structure satisfies two conditions: (1) acyclicity of the order on memory, even when it is considered across intermediate memory states, and (2) preservation of search paths to locations modified by interfering writes. Establishing the conditions, as well as the full linearizability proof utilizing our proof argument, reduces to simple concurrent reasoning. The result is a clear and comprehensible correctness proof, and elucidates common patterns underlying several existing data structures.

Cite as

Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and Sharon Shoham. Order out of Chaos: Proving Linearizability Using Local Views. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 23:1-23:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{feldman_et_al:LIPIcs.DISC.2018.23,
  author =	{Feldman, Yotam M. Y. and Enea, Constantin and Morrison, Adam and Rinetzky, Noam and Shoham, Sharon},
  title =	{{Order out of Chaos: Proving Linearizability Using Local Views}},
  booktitle =	{32nd International Symposium on Distributed Computing (DISC 2018)},
  pages =	{23:1--23:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-092-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{121},
  editor =	{Schmid, Ulrich and Widder, Josef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.23},
  URN =		{urn:nbn:de:0030-drops-98124},
  doi =		{10.4230/LIPIcs.DISC.2018.23},
  annote =	{Keywords: concurrency and synchronization, concurrent data structures, lineariazability, optimistic concurrency control, verification and formal methods}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail