Published in: LIPIcs, Volume 257, 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)
Allen Ibiapina and Ana Silva. Snapshot Disjointness in Temporal Graphs. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 257, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{ibiapina_et_al:LIPIcs.SAND.2023.1, author = {Ibiapina, Allen and Silva, Ana}, title = {{Snapshot Disjointness in Temporal Graphs}}, booktitle = {2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)}, pages = {1:1--1:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-275-4}, ISSN = {1868-8969}, year = {2023}, volume = {257}, editor = {Doty, David and Spirakis, Paul}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2023.1}, URN = {urn:nbn:de:0030-drops-179379}, doi = {10.4230/LIPIcs.SAND.2023.1}, annote = {Keywords: Temporal graphs, Menger’s Theorem, Snapshot disjointness} }
Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)
Celina M. H. de Figueiredo, Alexsander A. de Melo, Fabiano S. Oliveira, and Ana Silva. Maximum Cut on Interval Graphs of Interval Count Four Is NP-Complete. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 38:1-38:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{defigueiredo_et_al:LIPIcs.MFCS.2021.38, author = {de Figueiredo, Celina M. H. and de Melo, Alexsander A. and Oliveira, Fabiano S. and Silva, Ana}, title = {{Maximum Cut on Interval Graphs of Interval Count Four Is NP-Complete}}, booktitle = {46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)}, pages = {38:1--38:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-201-3}, ISSN = {1868-8969}, year = {2021}, volume = {202}, editor = {Bonchi, Filippo and Puglisi, Simon J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.38}, URN = {urn:nbn:de:0030-drops-144781}, doi = {10.4230/LIPIcs.MFCS.2021.38}, annote = {Keywords: maximum cut, interval graphs, interval lengths, interval count, NP-complete} }
Published in: LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)
Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos, Ignasi Sau, and Ana Silva. Dual Parameterization of Weighted Coloring. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{araujo_et_al:LIPIcs.IPEC.2018.12, author = {Ara\'{u}jo, J\'{u}lio and Campos, Victor A. and Lima, Carlos Vin{\'\i}cius G. C. and Fernandes dos Santos, Vin{\'\i}cius and Sau, Ignasi and Silva, Ana}, title = {{Dual Parameterization of Weighted Coloring}}, booktitle = {13th International Symposium on Parameterized and Exact Computation (IPEC 2018)}, pages = {12:1--12:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-084-2}, ISSN = {1868-8969}, year = {2019}, volume = {115}, editor = {Paul, Christophe and Pilipczuk, Michal}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.12}, URN = {urn:nbn:de:0030-drops-102134}, doi = {10.4230/LIPIcs.IPEC.2018.12}, annote = {Keywords: weighted coloring, max coloring, parameterized complexity, dual parameterization, FPT algorithms, polynomial kernels, split graphs, interval graphs} }
Feedback for Dagstuhl Publishing