Search Results

Documents authored by Skjoldjensen, Frederik Rye


Document
Deterministic Indexing for Packed Strings

Authors: Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen

Published in: LIPIcs, Volume 78, 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)


Abstract
Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet s, we show how to preprocess S in O(n) (deterministic) time and space O(n) such that given a packed pattern string of length m we can support queries in (deterministic) time O(m/a + log m + log log s), where a = w /log s is the number of characters packed in a word of size w = log n. Our query time is always at least as good as the previous best known bounds and whenever several characters are packed in a word, i.e., log s << w, the query times are faster.

Cite as

Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. Deterministic Indexing for Packed Strings. In 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 78, pp. 6:1-6:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.CPM.2017.6,
  author =	{Bille, Philip and G{\o}rtz, Inge Li and Skjoldjensen, Frederik Rye},
  title =	{{Deterministic Indexing for Packed Strings}},
  booktitle =	{28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)},
  pages =	{6:1--6:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-039-2},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{78},
  editor =	{K\"{a}rkk\"{a}inen, Juha and Radoszewski, Jakub and Rytter, Wojciech},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2017.6},
  URN =		{urn:nbn:de:0030-drops-73351},
  doi =		{10.4230/LIPIcs.CPM.2017.6},
  annote =	{Keywords: suffix tree, suffix array, deterministic algorithm, word packing}
}
Document
Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation

Authors: Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel Vildhøj, and Søren Vind

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
Given a static reference string R and a source string S, a relative compression of S with respect to R is an encoding of S as a sequence of references to substrings of R. Relative compression schemes are a classic model of compression and have recently proved very successful for compressing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of relative compression in a dynamic setting where the compressed source string S is subject to edit operations. The goal is to maintain the compressed representation compactly, while supporting edits and allowing efficient random access to the (uncompressed) source string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static pattern matching problem.

Cite as

Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel Vildhøj, and Søren Vind. Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 18:1-18:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.ISAAC.2016.18,
  author =	{Bille, Philip and Cording, Patrick Hagge and G{\o}rtz, Inge Li and Skjoldjensen, Frederik Rye and Vildh{\o}j, Hjalte Wedel and Vind, S{\o}ren},
  title =	{{Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{18:1--18:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.18},
  URN =		{urn:nbn:de:0030-drops-67872},
  doi =		{10.4230/LIPIcs.ISAAC.2016.18},
  annote =	{Keywords: Relative compression, dynamic compression, dynamic partial sum, sub-string concatenation, external macro compression}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail