Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)
Aleksa Stanković. Some Results on Approximability of Minimum Sum Vertex Cover. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 50:1-50:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{stankovic:LIPIcs.APPROX/RANDOM.2022.50, author = {Stankovi\'{c}, Aleksa}, title = {{Some Results on Approximability of Minimum Sum Vertex Cover}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)}, pages = {50:1--50:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-249-5}, ISSN = {1868-8969}, year = {2022}, volume = {245}, editor = {Chakrabarti, Amit and Swamy, Chaitanya}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.50}, URN = {urn:nbn:de:0030-drops-171722}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2022.50}, annote = {Keywords: Hardness of approximation, approximability, approximation algorithms, Label Cover, Unique Games Conjecture, Vertex Cover} }
Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)
Amey Bhangale and Aleksa Stanković. Max-3-Lin over Non-Abelian Groups with Universal Factor Graphs. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 21:1-21:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{bhangale_et_al:LIPIcs.ITCS.2022.21, author = {Bhangale, Amey and Stankovi\'{c}, Aleksa}, title = {{Max-3-Lin over Non-Abelian Groups with Universal Factor Graphs}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {21:1--21:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.21}, URN = {urn:nbn:de:0030-drops-156177}, doi = {10.4230/LIPIcs.ITCS.2022.21}, annote = {Keywords: Universal factor graphs, linear equations, non-abelian groups, hardness of approximation} }
Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)
Per Austrin and Aleksa Stanković. Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 24:1-24:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{austrin_et_al:LIPIcs.APPROX-RANDOM.2019.24, author = {Austrin, Per and Stankovi\'{c}, Aleksa}, title = {{Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)}, pages = {24:1--24:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-125-2}, ISSN = {1868-8969}, year = {2019}, volume = {145}, editor = {Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.24}, URN = {urn:nbn:de:0030-drops-112394}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2019.24}, annote = {Keywords: Constraint satisfaction problems, global cardinality constraints, semidefinite programming, inapproximability, Unique Games Conjecture, Max-Cut, Max-2-Sat} }
Feedback for Dagstuhl Publishing