Search Results

Documents authored by Straziota, Alessandro


Document
Temporal Queries for Dynamic Temporal Forests

Authors: Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Alessandro Straziota

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
In a temporal forest each edge has an associated set of time labels that specify the time instants in which the edges are available. A temporal path from vertex u to vertex v in the forest is a selection of a label for each edge in the unique path from u to v, assuming it exists, such that the labels selected for any two consecutive edges are non-decreasing. We design linear-size data structures that maintain a temporal forest of rooted trees under addition and deletion of both edge labels and singleton vertices, insertion of root-to-node edges, and removal of edges with no labels. Such data structures can answer temporal reachability, earliest arrival, and latest departure queries. All queries and updates are handled in polylogarithmic worst-case time. Our results can be adapted to deal with latencies. More precisely, all the worst-case time bounds are asymptotically unaffected when latencies are uniform. For arbitrary latencies, the update time becomes amortized in the incremental case where only label additions and edge/singleton insertions are allowed as well as in the decremental case in which only label deletions and edge/singleton removals are allowed. To the best of our knowledge, the only previously known data structure supporting temporal reachability queries is due to Brito, Albertini, Casteigts, and Travençolo [Social Network Analysis and Mining, 2021], which can handle general temporal graphs, answers queries in logarithmic time in the worst case, but requires an amortized update time that is quadratic in the number of vertices, up to polylogarithmic factors.

Cite as

Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Alessandro Straziota. Temporal Queries for Dynamic Temporal Forests. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 11:1-11:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.ISAAC.2024.11,
  author =	{Bil\`{o}, Davide and Gual\`{a}, Luciano and Leucci, Stefano and Proietti, Guido and Straziota, Alessandro},
  title =	{{Temporal Queries for Dynamic Temporal Forests}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{11:1--11:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.11},
  URN =		{urn:nbn:de:0030-drops-221382},
  doi =		{10.4230/LIPIcs.ISAAC.2024.11},
  annote =	{Keywords: temporal graphs, temporal reachability, earliest arrival, latest departure, dynamic forests}
}
Document
Graph Spanners for Group Steiner Distances

Authors: Davide Bilò, Luciano Gualà, Stefano Leucci, and Alessandro Straziota

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A spanner is a sparse subgraph of a given graph G which preserves distances, measured w.r.t. some distance metric, up to a multiplicative stretch factor. This paper addresses the problem of constructing graph spanners w.r.t. the group Steiner metric, which generalizes the recently introduced beer distance metric. In such a metric we are given a collection of groups of required vertices, and we measure the distance between two vertices as the length of the shortest path between them that traverses at least one required vertex from each group. We discuss the relation between group Steiner spanners and classic spanners and we show that they exhibit strong ties with sourcewise spanners w.r.t. the shortest path metric. Nevertheless, group Steiner spanners capture several interesting scenarios that are not encompassed by existing spanners. This happens, e.g., for the singleton case, in which each group consists of a single required vertex, thus modeling the setting in which routes need to traverse certain points of interests (in any order). We provide several constructions of group Steiner spanners for both the all-pairs and single-source case, which exhibit various size-stretch trade-offs. Notably, we provide spanners with almost-optimal trade-offs for the singleton case. Moreover, some of our spanners also yield novel trade-offs for classical sourcewise spanners. Finally, we also investigate the query times that can be achieved when our spanners are turned into group Steiner distance oracles with the same size, stretch, and building time.

Cite as

Davide Bilò, Luciano Gualà, Stefano Leucci, and Alessandro Straziota. Graph Spanners for Group Steiner Distances. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.ESA.2024.25,
  author =	{Bil\`{o}, Davide and Gual\`{a}, Luciano and Leucci, Stefano and Straziota, Alessandro},
  title =	{{Graph Spanners for Group Steiner Distances}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.25},
  URN =		{urn:nbn:de:0030-drops-210968},
  doi =		{10.4230/LIPIcs.ESA.2024.25},
  annote =	{Keywords: Network sparsification, Graph spanners, Group Steiner tree, Distance oracles}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail