Search Results

Documents authored by Sunny, Saina


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Approximate Problems for Finite Transducers

Authors: Emmanuel Filiot, Ismaël Jecker, Khushraj Madnani, and Saina Sunny

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Finite (word) state transducers extend finite state automata by defining a binary relation over finite words, called rational relation. If the rational relation is the graph of a function, this function is said to be rational. The class of sequential functions is a strict subclass of rational functions, defined as the functions recognised by input-deterministic finite state transducers. The class membership problems between those classes are known to be decidable. We consider approximate versions of these problems and show they are decidable as well. This includes the approximate functionality problem, which asks whether given a rational relation (by a transducer), is it close to a rational function, and the approximate determinisation problem, which asks whether a given rational function is close to a sequential function. We prove decidability results for several classical distances, including Hamming and Levenshtein edit distance. Finally, we investigate the approximate uniformisation problem, which asks, given a rational relation R, whether there exists a sequential function that is close to some function uniformising R. As its exact version, we prove that this problem is undecidable.

Cite as

Emmanuel Filiot, Ismaël Jecker, Khushraj Madnani, and Saina Sunny. Approximate Problems for Finite Transducers. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 155:1-155:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{filiot_et_al:LIPIcs.ICALP.2025.155,
  author =	{Filiot, Emmanuel and Jecker, Isma\"{e}l and Madnani, Khushraj and Sunny, Saina},
  title =	{{Approximate Problems for Finite Transducers}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{155:1--155:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.155},
  URN =		{urn:nbn:de:0030-drops-235329},
  doi =		{10.4230/LIPIcs.ICALP.2025.155},
  annote =	{Keywords: Finite state transducers, Edit distance, Determinisation, Functionality}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Edit Distance of Finite State Transducers

Authors: C. Aiswarya, Amaldev Manuel, and Saina Sunny

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We lift metrics over words to metrics over word-to-word transductions, by defining the distance between two transductions as the supremum of the distances of their respective outputs over all inputs. This allows to compare transducers beyond equivalence. Two transducers are close (resp. k-close) with respect to a metric if their distance is finite (resp. at most k). Over integer-valued metrics computing the distance between transducers is equivalent to deciding the closeness and k-closeness problems. For common integer-valued edit distances such as, Hamming, transposition, conjugacy and Levenshtein family of distances, we show that the closeness and the k-closeness problems are decidable for functional transducers. Hence, the distance with respect to these metrics is also computable. Finally, we relate the notion of distance between functions to the notions of diameter of a relation and index of a relation in another. We show that computing edit distance between functional transducers is equivalent to computing diameter of a rational relation and both are a specific instance of the index problem of rational relations.

Cite as

C. Aiswarya, Amaldev Manuel, and Saina Sunny. Edit Distance of Finite State Transducers. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 125:1-125:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aiswarya_et_al:LIPIcs.ICALP.2024.125,
  author =	{Aiswarya, C. and Manuel, Amaldev and Sunny, Saina},
  title =	{{Edit Distance of Finite State Transducers}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{125:1--125:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.125},
  URN =		{urn:nbn:de:0030-drops-202682},
  doi =		{10.4230/LIPIcs.ICALP.2024.125},
  annote =	{Keywords: transducers, edit distance, conjugacy}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail