Search Results

Documents authored by Terao, Tatsuya


Document
Parameterized Quantum Query Algorithms for Graph Problems

Authors: Tatsuya Terao and Ryuhei Mori

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this paper, we consider the parameterized quantum query complexity for graph problems. We design parameterized quantum query algorithms for k-vertex cover and k-matching problems, and present lower bounds on the parameterized quantum query complexity. Then, we show that our quantum query algorithms are optimal up to a constant factor when the parameters are small. Our main results are as follows. Parameterized quantum query complexity of vertex cover. In the k-vertex cover problem, we are given an undirected graph G with n vertices and an integer k, and the objective is to determine whether G has a vertex cover of size at most k. We show that the quantum query complexity of the k-vertex cover problem is O(√kn + k^{3/2}√n) in the adjacency matrix model. For the design of the quantum query algorithm, we use the method of kernelization, a well-known tool for the design of parameterized classical algorithms, combined with Grover’s search. Parameterized quantum query complexity of matching. In the k-matching problem, we are given an undirected graph G with n vertices and an integer k, and the objective is to determine whether G has a matching of size at least k. We show that the quantum query complexity of the k-matching problem is O(√kn + k²) in the adjacency matrix model. We obtain this upper bound by using Grover’s search carefully and analyzing the number of Grover’s searches by making use of potential functions. We also show that the quantum query complexity of the maximum matching problem is O(√pn + p²) where p is the size of the maximum matching. For small p, it improves known bounds Õ(n^{3/2}) for bipartite graphs [Blikstad-v.d.Brand-Efron-Mukhopadhyay-Nanongkai, FOCS 2022] and O(n^{7/4}) for general graphs [Kimmel-Witter, WADS 2021]. Lower bounds on parameterized quantum query complexity. We also present lower bounds on the quantum query complexities of the k-vertex cover and k-matching problems. The lower bounds prove the optimality of the above parameterized quantum query algorithms up to a constant factor when k is small. Indeed, the quantum query complexities of the k-vertex cover and k-matching problems are both Θ(√k n) when k = O(√n) and k = O(n^{2/3}), respectively.

Cite as

Tatsuya Terao and Ryuhei Mori. Parameterized Quantum Query Algorithms for Graph Problems. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 99:1-99:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{terao_et_al:LIPIcs.ESA.2024.99,
  author =	{Terao, Tatsuya and Mori, Ryuhei},
  title =	{{Parameterized Quantum Query Algorithms for Graph Problems}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{99:1--99:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.99},
  URN =		{urn:nbn:de:0030-drops-211707},
  doi =		{10.4230/LIPIcs.ESA.2024.99},
  annote =	{Keywords: Quantum query complexity, parameterized algorithms, vertex cover, matching, kernelization}
}
Document
Track A: Algorithms, Complexity and Games
Subquadratic Submodular Maximization with a General Matroid Constraint

Authors: Yusuke Kobayashi and Tatsuya Terao

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider fast algorithms for monotone submodular maximization with a general matroid constraint. We present a randomized (1 - 1/e - ε)-approximation algorithm that requires Õ_{ε}(√r n) independence oracle and value oracle queries, where n is the number of elements in the matroid and r ≤ n is the rank of the matroid. This improves upon the previously best algorithm by Buchbinder-Feldman-Schwartz [Mathematics of Operations Research 2017] that requires Õ_{ε}(r² + √rn) queries. Our algorithm is based on continuous relaxation, as with other submodular maximization algorithms in the literature. To achieve subquadratic query complexity, we develop a new rounding algorithm, which is our main technical contribution. The rounding algorithm takes as input a point represented as a convex combination of t bases of a matroid and rounds it to an integral solution. Our rounding algorithm requires Õ(r^{3/2} t) independence oracle queries, while the previously best rounding algorithm by Chekuri-Vondrák-Zenklusen [FOCS 2010] requires O(r² t) independence oracle queries. A key idea in our rounding algorithm is to use a directed cycle of arbitrary length in an auxiliary graph, while the algorithm of Chekuri-Vondrák-Zenklusen focused on directed cycles of length two.

Cite as

Yusuke Kobayashi and Tatsuya Terao. Subquadratic Submodular Maximization with a General Matroid Constraint. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 100:1-100:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kobayashi_et_al:LIPIcs.ICALP.2024.100,
  author =	{Kobayashi, Yusuke and Terao, Tatsuya},
  title =	{{Subquadratic Submodular Maximization with a General Matroid Constraint}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{100:1--100:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.100},
  URN =		{urn:nbn:de:0030-drops-202437},
  doi =		{10.4230/LIPIcs.ICALP.2024.100},
  annote =	{Keywords: submodular maximization, matroid constraint, approximation algorithm, rounding algorithm, query complexity}
}
Document
Track A: Algorithms, Complexity and Games
Faster Matroid Partition Algorithms

Authors: Tatsuya Terao

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
In the matroid partitioning problem, we are given k matroids ℳ₁ = (V, ℐ_1), … , ℳ_k = (V, ℐ_k) defined over a common ground set V of n elements, and we need to find a partitionable set S ⊆ V of largest possible cardinality, denoted by p. Here, a set S ⊆ V is called partitionable if there exists a partition (S_1, … , S_k) of S with S_i ∈ ℐ_i for i = 1, …, k. In 1986, Cunningham [Cunningham, 1986] presented a matroid partition algorithm that uses O(n p^{3/2} + k n) independence oracle queries, which was the previously known best algorithm. This query complexity is O(n^{5/2}) when k ≤ n. Our main result is to present a matroid partition algorithm that uses Õ(k^{1/3} n p + k n) independence oracle queries, which is Õ(n^{7/3}) when k ≤ n. This improves upon previous Cunningham’s algorithm. To obtain this, we present a new approach edge recycling augmentation, which can be attained through new ideas: an efficient utilization of the binary search technique by Nguyễn [Nguyen, 2019] and Chakrabarty-Lee-Sidford-Singla-Wong [Chakrabarty et al., 2019] and a careful analysis of the number of independence oracle queries. Our analysis differs significantly from the one for matroid intersection algorithms, because of the parameter k. We also present a matroid partition algorithm that uses Õ((n + k) √p) rank oracle queries.

Cite as

Tatsuya Terao. Faster Matroid Partition Algorithms. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 104:1-104:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{terao:LIPIcs.ICALP.2023.104,
  author =	{Terao, Tatsuya},
  title =	{{Faster Matroid Partition Algorithms}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{104:1--104:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.104},
  URN =		{urn:nbn:de:0030-drops-181566},
  doi =		{10.4230/LIPIcs.ICALP.2023.104},
  annote =	{Keywords: Matroid Partition, Matroid Union, Combinatorial Optimization}
}
Document
One-Face Shortest Disjoint Paths with a Deviation Terminal

Authors: Yusuke Kobayashi and Tatsuya Terao

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
For an undirected graph G and distinct vertices s₁, t₁, … , s_k, t_k called terminals, the shortest k-disjoint paths problem asks for k pairwise vertex-disjoint paths P₁, … , P_k such that P_i connects s_i and t_i for i = 1, … , k and the sum of their lengths is minimized. This problem is a natural optimization version of the well-known k-disjoint paths problem, and its polynomial solvability is widely open. One of the best results on the shortest k-disjoint paths problem is due to Datta et al. [Datta et al., 2018], who present a polynomial-time algorithm for the case when G is planar and all the terminals are on one face. In this paper, we extend this result by giving a polynomial-time randomized algorithm for the case when all the terminals except one are on some face of G. In our algorithm, we combine the arguments of Datta et al. with some results on the shortest disjoint (A + B)-paths problem shown by Hirai and Namba [Hirai and Namba, 2018]. To this end, we present a non-trivial bijection between k disjoint paths and disjoint (A + B)-paths, which is a key technical contribution of this paper.

Cite as

Yusuke Kobayashi and Tatsuya Terao. One-Face Shortest Disjoint Paths with a Deviation Terminal. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 47:1-47:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kobayashi_et_al:LIPIcs.ISAAC.2022.47,
  author =	{Kobayashi, Yusuke and Terao, Tatsuya},
  title =	{{One-Face Shortest Disjoint Paths with a Deviation Terminal}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{47:1--47:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.47},
  URN =		{urn:nbn:de:0030-drops-173322},
  doi =		{10.4230/LIPIcs.ISAAC.2022.47},
  annote =	{Keywords: shortest disjoint paths, polynomial time algorithm, planar graph}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail