Search Results

Documents authored by Théry, Laurent


Document
Proof Pearl : Playing with the Tower of Hanoi Formally

Authors: Laurent Théry

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
The Tower of Hanoi is a typical example that is used in computer science courses to illustrate all the power of recursion. In this paper, we show that it is also a very nice example for inductive proofs and formal verification. We present some non-trivial results that have been formalised in the {Coq} proof assistant.

Cite as

Laurent Théry. Proof Pearl : Playing with the Tower of Hanoi Formally. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{thery:LIPIcs.ITP.2021.31,
  author =	{Th\'{e}ry, Laurent},
  title =	{{Proof Pearl : Playing with the Tower of Hanoi Formally}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.31},
  URN =		{urn:nbn:de:0030-drops-139267},
  doi =		{10.4230/LIPIcs.ITP.2021.31},
  annote =	{Keywords: Mathematical logic, Formal proof, Hanoi Tower}
}
Document
Formal Proofs of Tarjan’s Strongly Connected Components Algorithm in Why3, Coq and Isabelle

Authors: Ran Chen, Cyril Cohen, Jean-Jacques Lévy, Stephan Merz, and Laurent Théry

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
Comparing provers on a formalization of the same problem is always a valuable exercise. In this paper, we present the formal proof of correctness of a non-trivial algorithm from graph theory that was carried out in three proof assistants: Why3, Coq, and Isabelle.

Cite as

Ran Chen, Cyril Cohen, Jean-Jacques Lévy, Stephan Merz, and Laurent Théry. Formal Proofs of Tarjan’s Strongly Connected Components Algorithm in Why3, Coq and Isabelle. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ITP.2019.13,
  author =	{Chen, Ran and Cohen, Cyril and L\'{e}vy, Jean-Jacques and Merz, Stephan and Th\'{e}ry, Laurent},
  title =	{{Formal Proofs of Tarjan’s Strongly Connected Components Algorithm in Why3, Coq and Isabelle}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.13},
  URN =		{urn:nbn:de:0030-drops-110683},
  doi =		{10.4230/LIPIcs.ITP.2019.13},
  annote =	{Keywords: Mathematical logic, Formal proof, Graph algorithm, Program verification}
}
Document
Quantitative Continuity and Computable Analysis in Coq

Authors: Florian Steinberg, Laurent Théry, and Holger Thies

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
We give a number of formal proofs of theorems from the field of computable analysis. Many of our results specify executable algorithms that work on infinite inputs by means of operating on finite approximations and are proven correct in the sense of computable analysis. The development is done in the proof assistant Coq and heavily relies on the Incone library for information theoretic continuity. This library is developed by one of the authors and the results of this paper extend the library. While full executability in a formal development of mathematical statements about real numbers and the like is not a feature that is unique to the Incone library, its original contribution is to adhere to the conventions of computable analysis to provide a general purpose interface for algorithmic reasoning on continuous structures. The paper includes a brief description of the most important concepts of Incone and its sub libraries mf and Metric. The results that provide complete computational content include that the algebraic operations and the efficient limit operator on the reals are computable, that the countably infinite product of a space with itself is isomorphic to a space of functions, compatibility of the enumeration representation of subsets of natural numbers with the abstract definition of the space of open subsets of the natural numbers, and that continuous realizability implies sequential continuity. We also describe many non-computational results that support the correctness of definitions from the library. These include that the information theoretic notion of continuity used in the library is equivalent to the metric notion of continuity on Baire space, a complete comparison of the different concepts of continuity that arise from metric and represented space structures and the discontinuity of the unrestricted limit operator on the real numbers and the task of selecting an element of a closed subset of the natural numbers.

Cite as

Florian Steinberg, Laurent Théry, and Holger Thies. Quantitative Continuity and Computable Analysis in Coq. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 28:1-28:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{steinberg_et_al:LIPIcs.ITP.2019.28,
  author =	{Steinberg, Florian and Th\'{e}ry, Laurent and Thies, Holger},
  title =	{{Quantitative Continuity and Computable Analysis in Coq}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{28:1--28:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.28},
  URN =		{urn:nbn:de:0030-drops-110830},
  doi =		{10.4230/LIPIcs.ITP.2019.28},
  annote =	{Keywords: computable analysis, Coq, contionuous functionals, discontinuity, closed choice on the naturals}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail