Search Results

Documents authored by Thejaswini, K. S.


Document
A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

Authors: K. S. Thejaswini, Pierre Ohlmann, and Marcin Jurdziński

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
The classic McNaughton-Zielonka algorithm for solving parity games has excellent performance in practice, but its worst-case asymptotic complexity is worse than that of the state-of-the-art algorithms. This work pinpoints the mechanism that is responsible for this relative underperformance and proposes a new technique that eliminates it. The culprit is the wasteful manner in which the results obtained from recursive calls are indiscriminately discarded by the algorithm whenever subgames on which the algorithm is run change. Our new technique is based on firstly enhancing the algorithm to compute attractor decompositions of subgames instead of just winning strategies on them, and then on making it carefully use attractor decompositions computed in prior recursive calls to reduce the size of subgames on which further recursive calls are made. We illustrate the new technique on the classic example of the recursive McNaughton-Zielonka algorithm, but it can be applied to other symmetric attractor-based algorithms that were inspired by it, such as the quasi-polynomial versions of the McNaughton-Zielonka algorithm based on universal trees.

Cite as

K. S. Thejaswini, Pierre Ohlmann, and Marcin Jurdziński. A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 44:1-44:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{thejaswini_et_al:LIPIcs.FSTTCS.2022.44,
  author =	{Thejaswini, K. S. and Ohlmann, Pierre and Jurdzi\'{n}ski, Marcin},
  title =	{{A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{44:1--44:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.44},
  URN =		{urn:nbn:de:0030-drops-174365},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.44},
  annote =	{Keywords: Parity games, Attractor decomposition, Quasipolynomial Algorithms, Universal trees}
}
Document
Adaptive Synchronisation of Pushdown Automata

Authors: A. R. Balasubramanian and K. S. Thejaswini

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
We introduce the notion of adaptive synchronisation for pushdown automata, in which there is an external observer who has no knowledge about the current state of the pushdown automaton, but can observe the contents of the stack. The observer would then like to decide if it is possible to bring the automaton from any state into some predetermined state by giving inputs to it in an adaptive manner, i.e., the next input letter to be given can depend on how the contents of the stack changed after the current input letter. We show that for non-deterministic pushdown automata, this problem is 2-EXPTIME-complete and for deterministic pushdown automata, we show EXPTIME-completeness. To prove the lower bounds, we first introduce (different variants of) subset-synchronisation and show that these problems are polynomial-time equivalent with the adaptive synchronisation problem. We then prove hardness results for the subset-synchronisation problems. For proving the upper bounds, we consider the problem of deciding if a given alternating pushdown system has an accepting run with at most k leaves and we provide an n^O(k²) time algorithm for this problem.

Cite as

A. R. Balasubramanian and K. S. Thejaswini. Adaptive Synchronisation of Pushdown Automata. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{balasubramanian_et_al:LIPIcs.CONCUR.2021.17,
  author =	{Balasubramanian, A. R. and Thejaswini, K. S.},
  title =	{{Adaptive Synchronisation of Pushdown Automata}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.17},
  URN =		{urn:nbn:de:0030-drops-143948},
  doi =		{10.4230/LIPIcs.CONCUR.2021.17},
  annote =	{Keywords: Adaptive synchronisation, Pushdown automata, Alternating pushdown systems}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Strahler Number of a Parity Game

Authors: Laure Daviaud, Marcin Jurdziński, and K. S. Thejaswini

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
The Strahler number of a rooted tree is the largest height of a perfect binary tree that is its minor. The Strahler number of a parity game is proposed to be defined as the smallest Strahler number of the tree of any of its attractor decompositions. It is proved that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices n and linear in (d/(2k))^k, where d is the number of priorities and k is the Strahler number. This complexity is quasi-polynomial because the Strahler number is at most logarithmic in the number of vertices. The proof is based on a new construction of small Strahler-universal trees. It is shown that the Strahler number of a parity game is a robust, and hence arguably natural, parameter: it coincides with its alternative version based on trees of progress measures and - remarkably - with the register number defined by Lehtinen (2018). It follows that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices and linear in (d/(2k))^k, where k is the register number. This significantly improves the running times and space achieved for parity games of bounded register number by Lehtinen (2018) and by Parys (2020). The running time of the algorithm based on small Strahler-universal trees yields a novel trade-off k ⋅ lg(d/k) = O(log n) between the two natural parameters that measure the structural complexity of a parity game, which allows solving parity games in polynomial time. This includes as special cases the asymptotic settings of those parameters covered by the results of Calude, Jain Khoussainov, Li, and Stephan (2017), of Jurdziński and Lazić (2017), and of Lehtinen (2018), and it significantly extends the range of such settings, for example to d = 2^O(√{lg n}) and k = O(√{lg n}).

Cite as

Laure Daviaud, Marcin Jurdziński, and K. S. Thejaswini. The Strahler Number of a Parity Game. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 123:1-123:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{daviaud_et_al:LIPIcs.ICALP.2020.123,
  author =	{Daviaud, Laure and Jurdzi\'{n}ski, Marcin and Thejaswini, K. S.},
  title =	{{The Strahler Number of a Parity Game}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{123:1--123:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.123},
  URN =		{urn:nbn:de:0030-drops-125304},
  doi =		{10.4230/LIPIcs.ICALP.2020.123},
  annote =	{Keywords: parity game, attractor decomposition, progress measure, universal tree, Strahler number}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail