Search Results

Documents authored by Vredeveld, Tjark


Document
Track A: Algorithms, Complexity and Games
Additive Approximation Schemes for Load Balancing Problems

Authors: Moritz Buchem, Lars Rohwedder, Tjark Vredeveld, and Andreas Wiese

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We formalize the concept of additive approximation schemes and apply it to load balancing problems on identical machines. Additive approximation schemes compute a solution with an absolute error in the objective of at most ε h for some suitable parameter h and any given ε > 0. We consider the problem of assigning jobs to identical machines with respect to common load balancing objectives like makespan minimization, the Santa Claus problem (on identical machines), and the envy-minimizing Santa Claus problem. For these settings we present additive approximation schemes for h = p_{max}, the maximum processing time of the jobs. Our technical contribution is two-fold. First, we introduce a new relaxation based on integrally assigning slots to machines and fractionally assigning jobs to the slots. We refer to this relaxation as the slot-MILP. While it has a linear number of integral variables, we identify structural properties of (near-)optimal solutions, which allow us to compute those in polynomial time. The second technical contribution is a local-search algorithm which rounds any given solution to the slot-MILP, introducing an additive error on the machine loads of at most ε⋅ p_{max}.

Cite as

Moritz Buchem, Lars Rohwedder, Tjark Vredeveld, and Andreas Wiese. Additive Approximation Schemes for Load Balancing Problems. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 42:1-42:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{buchem_et_al:LIPIcs.ICALP.2021.42,
  author =	{Buchem, Moritz and Rohwedder, Lars and Vredeveld, Tjark and Wiese, Andreas},
  title =	{{Additive Approximation Schemes for Load Balancing Problems}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{42:1--42:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.42},
  URN =		{urn:nbn:de:0030-drops-141116},
  doi =		{10.4230/LIPIcs.ICALP.2021.42},
  annote =	{Keywords: Load balancing, Approximation schemes, Parallel machine scheduling}
}
Document
10071 Open Problems – Scheduling

Authors: Jim Anderson, Björn Andersson, Yossi Azar, Nikhil Bansal, Enrico Bini, Marek Chrobak, José Correa, Liliana Cucu-Grosjean, Rob Davis, Arvind Easwaran, Jeff Edmonds, Shelby Funk, Sathish Gopalakrishnan, Han Hoogeveen, Claire Mathieu, Nicole Megow, Seffi Naor, Kirk Pruhs, Maurice Queyranne, Adi Rosén, Nicolas Schabanel, Jiří Sgall, René Sitters, Sebastian Stiller, Marc Uetz, Tjark Vredeveld, and Gerhard J. Woeginger

Published in: Dagstuhl Seminar Proceedings, Volume 10071, Scheduling (2010)


Abstract
Collection of the open problems presented at the scheduling seminar.

Cite as

Jim Anderson, Björn Andersson, Yossi Azar, Nikhil Bansal, Enrico Bini, Marek Chrobak, José Correa, Liliana Cucu-Grosjean, Rob Davis, Arvind Easwaran, Jeff Edmonds, Shelby Funk, Sathish Gopalakrishnan, Han Hoogeveen, Claire Mathieu, Nicole Megow, Seffi Naor, Kirk Pruhs, Maurice Queyranne, Adi Rosén, Nicolas Schabanel, Jiří Sgall, René Sitters, Sebastian Stiller, Marc Uetz, Tjark Vredeveld, and Gerhard J. Woeginger. 10071 Open Problems – Scheduling. In Scheduling. Dagstuhl Seminar Proceedings, Volume 10071, pp. 1-24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:DagSemProc.10071.3,
  author =	{Anderson, Jim and Andersson, Bj\"{o}rn and Azar, Yossi and Bansal, Nikhil and Bini, Enrico and Chrobak, Marek and Correa, Jos\'{e} and Cucu-Grosjean, Liliana and Davis, Rob and Easwaran, Arvind and Edmonds, Jeff and Funk, Shelby and Gopalakrishnan, Sathish and Hoogeveen, Han and Mathieu, Claire and Megow, Nicole and Naor, Seffi and Pruhs, Kirk and Queyranne, Maurice and Ros\'{e}n, Adi and Schabanel, Nicolas and Sgall, Ji\v{r}{\'\i} and Sitters, Ren\'{e} and Stiller, Sebastian and Uetz, Marc and Vredeveld, Tjark and Woeginger, Gerhard J.},
  title =	{{10071 Open Problems – Scheduling}},
  booktitle =	{Scheduling},
  pages =	{1--24},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10071},
  editor =	{Susanne Albers and Sanjoy K. Baruah and Rolf H. M\"{o}hring and Kirk Pruhs},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10071.3},
  URN =		{urn:nbn:de:0030-drops-25367},
  doi =		{10.4230/DagSemProc.10071.3},
  annote =	{Keywords: Open problems, scheduling}
}
Document
Models and Algorithms for Stochastic Online Scheduling

Authors: Nicole Megow, Marc Uetz, and Tjark Vredeveld

Published in: Dagstuhl Seminar Proceedings, Volume 5031, Algorithms for Optimization with Incomplete Information (2005)


Abstract
We introduce a model for non-preemptive scheduling under uncertainty. In this model, we combine the main characteristics of online and stochastic scheduling in a simple and natural way. Job processing times are assumed to be stochastic, but in contrast to the classical stochastic scheduling models, we assume that jobs arrive online over time, and there is no knowledge about the jobs that will arrive in the future. The model incorporates both, stochastic scheduling and online scheduling as a special case. The particular setting we analyze is parallel machine scheduling, with the objective to minimize the total weighted completion times of jobs. We propose simple, combinatorial online scheduling policies for that model, and derive performance guarantees that match the currently best known performance guarantees for stochastic parallel machine scheduling. For processing times that follow NBUE distributions, we improve upon previously best known performance bounds, even though we consider a more general setting.

Cite as

Nicole Megow, Marc Uetz, and Tjark Vredeveld. Models and Algorithms for Stochastic Online Scheduling. In Algorithms for Optimization with Incomplete Information. Dagstuhl Seminar Proceedings, Volume 5031, pp. 1-4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{megow_et_al:DagSemProc.05031.15,
  author =	{Megow, Nicole and Uetz, Marc and Vredeveld, Tjark},
  title =	{{Models and Algorithms for Stochastic Online Scheduling}},
  booktitle =	{Algorithms for Optimization with Incomplete Information},
  pages =	{1--4},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{5031},
  editor =	{Susanne Albers and Rolf H. M\"{o}hring and Georg Ch. Pflug and R\"{u}diger Schultz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05031.15},
  URN =		{urn:nbn:de:0030-drops-1106},
  doi =		{10.4230/DagSemProc.05031.15},
  annote =	{Keywords: stochastic scheduling , online optimization , weighted completion time}
}
Document
Average Case and Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm

Authors: Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guidouca Schaefer, and Tjark Vredeveld

Published in: Dagstuhl Seminar Proceedings, Volume 5031, Algorithms for Optimization with Incomplete Information (2005)


Abstract
In this paper we introduce the notion of smoothed competitive analysis of online algorithms. Smoothed analysis has been proposed by Spielman and Teng to explain the behaviour of algorithms that work well in practice while performing very poorly from a worst case analysis point of view. We apply this notion to analyze the Multi-Level Feedback (MLF) algorithm to minimize the total flow time on a sequence of jobs released over time when the processing time of a job is only known at time of completion. The initial processing times are integers in the range $[1,2^K]$. We use a partial bit randomization model, i.e., the initial processing times are smoothed by changing the $k$ least significant bits under a quite general class of probability distributions. We show that MLF admits a smoothed competitive ratio of $O((2^k/\psigma)^3 + (2^k/\psigma)^2 2^{K-k}})$, where $\sigma$ denotes the standard deviation of the distribution. In particular, we obtain a competitive ratio of $O(2^{K-k})$ if $\sigma = \Theta(2^k)$. We also prove an $\Omega(2^{K-k})$ lower bound for any deterministic algorithm that is run on processing times smoothed according to the partial bit randomization model. For various other smoothing models, including the additive symmetric smoothing one, which is a variant of the model used by Spielman and Teng, we give a higher lower bound of $\Omega(2^K)$. A direct consequence of our result is also the first average case analysis of MLF. We show a constant expected ratio of the total flow time of MLF to the optimum under several distributions including the uniform one.

Cite as

Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guidouca Schaefer, and Tjark Vredeveld. Average Case and Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm. In Algorithms for Optimization with Incomplete Information. Dagstuhl Seminar Proceedings, Volume 5031, pp. 5-28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{becchetti_et_al:DagSemProc.05031.7,
  author =	{Becchetti, Luca and Leonardi, Stefano and Marchetti-Spaccamela, Alberto and Schaefer, Guidouca and Vredeveld, Tjark},
  title =	{{Average Case and Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm}},
  booktitle =	{Algorithms for Optimization with Incomplete Information},
  pages =	{5--28},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{5031},
  editor =	{Susanne Albers and Rolf H. M\"{o}hring and Georg Ch. Pflug and R\"{u}diger Schultz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05031.7},
  URN =		{urn:nbn:de:0030-drops-752},
  doi =		{10.4230/DagSemProc.05031.7},
  annote =	{Keywords: Competitive analysis , average case analysis , smoothed analysis , scheduling}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail