Search Results

Documents authored by Vreman, Nils


Document
Randomization as Mitigation of Directed Timing Inference Based Attacks on Time-Triggered Real-Time Systems with Task Replication

Authors: Kristin Krüger, Nils Vreman, Richard Pates, Martina Maggio, Marcus Völp, and Gerhard Fohler

Published in: LITES, Volume 7, Issue 1 (2021): Special Issue on Embedded System Security. Leibniz Transactions on Embedded Systems, Volume 7, Issue 1


Abstract
Time-triggered real-time systems achieve deterministic behavior using schedules that are constructed offline, based on scheduling constraints. Their deterministic behavior makes time-triggered systems suitable for usage in safety-critical environments, like avionics. However, this determinism also allows attackers to fine-tune attacks that can be carried out after studying the behavior of the system through side channels, targeting safety-critical victim tasks. Replication -- i.e., the execution of task variants across different cores -- is inherently able to tolerate both accidental and malicious faults (i.e. attacks) as long as these faults are independent of one another. Yet, targeted attacks on the timing behavior of tasks which utilize information gained about the system behavior violate the fault independence assumption fault tolerance is based on. This violation may give attackers the opportunity to compromise all replicas simultaneously, in particular if they can mount the attack from already compromised components. In this paper, we analyze vulnerabilities of time-triggered systems, focusing on safety-certified multicore real-time systems. We introduce two runtime mitigation strategies to withstand directed timing inference based attacks: (i) schedule randomization at slot level, and (ii) randomization within a set of offline constructed schedules. We evaluate these mitigation strategies with synthetic experiments and a real case study to show their effectiveness and practicality.

Cite as

Kristin Krüger, Nils Vreman, Richard Pates, Martina Maggio, Marcus Völp, and Gerhard Fohler. Randomization as Mitigation of Directed Timing Inference Based Attacks on Time-Triggered Real-Time Systems with Task Replication. In LITES, Volume 7, Issue 1 (2021): Special Issue on Embedded System Security. Leibniz Transactions on Embedded Systems, Volume 7, Issue 1, pp. 01:1-01:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Article{kruger_et_al:LITES.7.1.1,
  author =	{Kr\"{u}ger, Kristin and Vreman, Nils and Pates, Richard and Maggio, Martina and V\"{o}lp, Marcus and Fohler, Gerhard},
  title =	{{Randomization as Mitigation of Directed Timing Inference Based Attacks on Time-Triggered Real-Time Systems with Task Replication}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{01:1--01:29},
  ISSN =	{2199-2002},
  year =	{2021},
  volume =	{7},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.7.1.1},
  doi =		{10.4230/LITES.7.1.1},
  annote =	{Keywords: real-time systems, time-triggered systems, security}
}
Document
Stability and Performance Analysis of Control Systems Subject to Bursts of Deadline Misses

Authors: Nils Vreman, Anton Cervin, and Martina Maggio

Published in: LIPIcs, Volume 196, 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)


Abstract
Control systems are by design robust to various disturbances, ranging from noise to unmodelled dynamics. Recent work on the weakly hard model - applied to controllers - has shown that control tasks can also be inherently robust to deadline misses. However, existing exact analyses are limited to the stability of the closed-loop system. In this paper we show that stability is important but cannot be the only factor to determine whether the behaviour of a system is acceptable also under deadline misses. We focus on systems that experience bursts of deadline misses and on their recovery to normal operation. We apply the resulting comprehensive analysis (that includes both stability and performance) to a Furuta pendulum, comparing simulated data and data obtained with the real plant. We further evaluate our analysis using a benchmark set composed of 133 systems, which is considered representative of industrial control plants. Our results show the handling of the control signal is an extremely important factor in the performance degradation that the controller experiences - a clear indication that only a stability test does not give enough indication about the robustness to deadline misses.

Cite as

Nils Vreman, Anton Cervin, and Martina Maggio. Stability and Performance Analysis of Control Systems Subject to Bursts of Deadline Misses. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 196, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{vreman_et_al:LIPIcs.ECRTS.2021.15,
  author =	{Vreman, Nils and Cervin, Anton and Maggio, Martina},
  title =	{{Stability and Performance Analysis of Control Systems Subject to Bursts of Deadline Misses}},
  booktitle =	{33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-192-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{196},
  editor =	{Brandenburg, Bj\"{o}rn B.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2021.15},
  URN =		{urn:nbn:de:0030-drops-139460},
  doi =		{10.4230/LIPIcs.ECRTS.2021.15},
  annote =	{Keywords: Fault-Tolerant Control Systems, Weakly Hard Task Model}
}
Document
Evaluation of Burst Failure Robustness of Control Systems in the Fog

Authors: Nils Vreman and Claudio Mandrioli

Published in: OASIcs, Volume 80, 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020)


Abstract
This paper investigates the robustness of control systems when a controller is run in a Fog environment. Control systems in the Fog are introduced and a discussion regarding relevant faults is presented. A preliminary investigation of the robustness properties of a MinSeg case study is presented and commented. The discussion is then used to outline future lines of research.

Cite as

Nils Vreman and Claudio Mandrioli. Evaluation of Burst Failure Robustness of Control Systems in the Fog. In 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020). Open Access Series in Informatics (OASIcs), Volume 80, pp. 8:1-8:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{vreman_et_al:OASIcs.Fog-IoT.2020.8,
  author =	{Vreman, Nils and Mandrioli, Claudio},
  title =	{{Evaluation of Burst Failure Robustness of Control Systems in the Fog}},
  booktitle =	{2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020)},
  pages =	{8:1--8:8},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-144-3},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{80},
  editor =	{Cervin, Anton and Yang, Yang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Fog-IoT.2020.8},
  URN =		{urn:nbn:de:0030-drops-120025},
  doi =		{10.4230/OASIcs.Fog-IoT.2020.8},
  annote =	{Keywords: Networked Control Systems, Stability Analysis, Control over Internet, Fault Tolerance}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail