Search Results

Documents authored by Vuong, Thuy-Duong


Document
Domain Sparsification of Discrete Distributions Using Entropic Independence

Authors: Nima Anari, Michał Dereziński, Thuy-Duong Vuong, and Elizabeth Yang

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We present a framework for speeding up the time it takes to sample from discrete distributions μ defined over subsets of size k of a ground set of n elements, in the regime where k is much smaller than n. We show that if one has access to estimates of marginals P_{S∼ μ} {i ∈ S}, then the task of sampling from μ can be reduced to sampling from related distributions ν supported on size k subsets of a ground set of only n^{1-α}⋅ poly(k) elements. Here, 1/α ∈ [1, k] is the parameter of entropic independence for μ. Further, our algorithm only requires sparsified distributions ν that are obtained by applying a sparse (mostly 0) external field to μ, an operation that for many distributions μ of interest, retains algorithmic tractability of sampling from ν. This phenomenon, which we dub domain sparsification, allows us to pay a one-time cost of estimating the marginals of μ, and in return reduce the amortized cost needed to produce many samples from the distribution μ, as is often needed in upstream tasks such as counting and inference. For a wide range of distributions where α = Ω(1), our result reduces the domain size, and as a corollary, the cost-per-sample, by a poly(n) factor. Examples include monomers in a monomer-dimer system, non-symmetric determinantal point processes, and partition-constrained Strongly Rayleigh measures. Our work significantly extends the reach of prior work of Anari and Dereziński who obtained domain sparsification for distributions with a log-concave generating polynomial (corresponding to α = 1). As a corollary of our new analysis techniques, we also obtain a less stringent requirement on the accuracy of marginal estimates even for the case of log-concave polynomials; roughly speaking, we show that constant-factor approximation is enough for domain sparsification, improving over O(1/k) relative error established in prior work.

Cite as

Nima Anari, Michał Dereziński, Thuy-Duong Vuong, and Elizabeth Yang. Domain Sparsification of Discrete Distributions Using Entropic Independence. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{anari_et_al:LIPIcs.ITCS.2022.5,
  author =	{Anari, Nima and Derezi\'{n}ski, Micha{\l} and Vuong, Thuy-Duong and Yang, Elizabeth},
  title =	{{Domain Sparsification of Discrete Distributions Using Entropic Independence}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{5:1--5:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.5},
  URN =		{urn:nbn:de:0030-drops-156013},
  doi =		{10.4230/LIPIcs.ITCS.2022.5},
  annote =	{Keywords: Domain Sparsification, Markov Chains, Sampling, Entropic Independence}
}
Document
APPROX
An Extension of Plücker Relations with Applications to Subdeterminant Maximization

Authors: Nima Anari and Thuy-Duong Vuong

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
Given a matrix A and k ≥ 0, we study the problem of finding the k × k submatrix of A with the maximum determinant in absolute value. This problem is motivated by the question of computing the determinant-based lower bound of cite{LSV86} on hereditary discrepancy, which was later shown to be an approximate upper bound as well [Matoušek, 2013]. The special case where k coincides with one of the dimensions of A has been extensively studied. Nikolov gave a 2^{O(k)}-approximation algorithm for this special case, matching known lower bounds; he also raised as an open problem the question of designing approximation algorithms for the general case. We make progress towards answering this question by giving the first efficient approximation algorithm for general k× k subdeterminant maximization with an approximation ratio that depends only on k. Our algorithm finds a k^{O(k)}-approximate solution by performing a simple local search. Our main technical contribution, enabling the analysis of the approximation ratio, is an extension of Plücker relations for the Grassmannian, which may be of independent interest; Plücker relations are quadratic polynomial equations involving the set of k× k subdeterminants of a k× n matrix. We find an extension of these relations to k× k subdeterminants of general m× n matrices.

Cite as

Nima Anari and Thuy-Duong Vuong. An Extension of Plücker Relations with Applications to Subdeterminant Maximization. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 56:1-56:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{anari_et_al:LIPIcs.APPROX/RANDOM.2020.56,
  author =	{Anari, Nima and Vuong, Thuy-Duong},
  title =	{{An Extension of Pl\"{u}cker Relations with Applications to Subdeterminant Maximization}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{56:1--56:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.56},
  URN =		{urn:nbn:de:0030-drops-126596},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.56},
  annote =	{Keywords: Pl\"{u}cker relations, determinant maximization, local search, exchange property, discrete concavity, discrepancy}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail