Search Results

Documents authored by Wei, Hao-Ting


Document
APPROX
Polylogarithmic Approximation Algorithm for k-Connected Directed Steiner Tree on Quasi-Bipartite Graphs

Authors: Chun-Hsiang Chan, Bundit Laekhanukit, Hao-Ting Wei, and Yuhao Zhang

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
In the k-Connected Directed Steiner Tree problem (k-DST), we are given a directed graph G = (V,E) with edge (or vertex) costs, a root vertex r, a set of q terminals T, and a connectivity requirement k > 0; the goal is to find a minimum-cost subgraph H of G such that H has k edge-disjoint paths from the root r to each terminal in T. The k-DST problem is a natural generalization of the classical Directed Steiner Tree problem (DST) in the fault-tolerant setting in which the solution subgraph is required to have an r,t-path, for every terminal t, even after removing k-1 vertices or edges. Despite being a classical problem, there are not many positive results on the problem, especially for the case k ≥ 3. In this paper, we present an O(log k log q)-approximation algorithm for k-DST when an input graph is quasi-bipartite, i.e., when there is no edge joining two non-terminal vertices. To the best of our knowledge, our algorithm is the only known non-trivial approximation algorithm for k-DST, for k ≥ 3, that runs in polynomial-time Our algorithm is tight for every constant k, due to the hardness result inherited from the Set Cover problem.

Cite as

Chun-Hsiang Chan, Bundit Laekhanukit, Hao-Ting Wei, and Yuhao Zhang. Polylogarithmic Approximation Algorithm for k-Connected Directed Steiner Tree on Quasi-Bipartite Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 63:1-63:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.APPROX/RANDOM.2020.63,
  author =	{Chan, Chun-Hsiang and Laekhanukit, Bundit and Wei, Hao-Ting and Zhang, Yuhao},
  title =	{{Polylogarithmic Approximation Algorithm for k-Connected Directed Steiner Tree on Quasi-Bipartite Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{63:1--63:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.63},
  URN =		{urn:nbn:de:0030-drops-126667},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.63},
  annote =	{Keywords: Approximation Algorithms, Network Design, Directed Graphs}
}
Document
An O(1)-Approximation Algorithm for Dynamic Weighted Vertex Cover with Soft Capacity

Authors: Hao-Ting Wei, Wing-Kai Hon, Paul Horn, Chung-Shou Liao, and Kunihiko Sadakane

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
This study considers the soft capacitated vertex cover problem in a dynamic setting. This problem generalizes the dynamic model of the vertex cover problem, which has been intensively studied in recent years. Given a dynamically changing vertex-weighted graph G=(V,E), which allows edge insertions and edge deletions, the goal is to design a data structure that maintains an approximate minimum vertex cover while satisfying the capacity constraint of each vertex. That is, when picking a copy of a vertex v in the cover, the number of v's incident edges covered by the copy is up to a given capacity of v. We extend Bhattacharya et al.'s work [SODA'15 and ICALP'15] to obtain a deterministic primal-dual algorithm for maintaining a constant-factor approximate minimum capacitated vertex cover with O(log n / epsilon) amortized update time, where n is the number of vertices in the graph. The algorithm can be extended to (1) a more general model in which each edge is associated with a non-uniform and unsplittable demand, and (2) the more general capacitated set cover problem.

Cite as

Hao-Ting Wei, Wing-Kai Hon, Paul Horn, Chung-Shou Liao, and Kunihiko Sadakane. An O(1)-Approximation Algorithm for Dynamic Weighted Vertex Cover with Soft Capacity. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{wei_et_al:LIPIcs.APPROX-RANDOM.2018.27,
  author =	{Wei, Hao-Ting and Hon, Wing-Kai and Horn, Paul and Liao, Chung-Shou and Sadakane, Kunihiko},
  title =	{{An O(1)-Approximation Algorithm for Dynamic Weighted Vertex Cover with Soft Capacity}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.27},
  URN =		{urn:nbn:de:0030-drops-94312},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.27},
  annote =	{Keywords: approximation algorithm, dynamic algorithm, primal-dual, vertex cover}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail