Published in: Dagstuhl Reports, Volume 12, Issue 8 (2023)
David Duvenaud, Markus Heinonen, Michael Tiemann, and Max Welling. Differential Equations and Continuous-Time Deep Learning (Dagstuhl Seminar 22332). In Dagstuhl Reports, Volume 12, Issue 8, pp. 20-30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@Article{duvenaud_et_al:DagRep.12.8.20,
author = {Duvenaud, David and Heinonen, Markus and Tiemann, Michael and Welling, Max},
title = {{Differential Equations and Continuous-Time Deep Learning (Dagstuhl Seminar 22332)}},
pages = {20--30},
journal = {Dagstuhl Reports},
ISSN = {2192-5283},
year = {2023},
volume = {12},
number = {8},
editor = {Duvenaud, David and Heinonen, Markus and Tiemann, Michael and Welling, Max},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.8.20},
URN = {urn:nbn:de:0030-drops-177131},
doi = {10.4230/DagRep.12.8.20},
annote = {Keywords: deep learning, differential equations}
}
Published in: Dagstuhl Reports, Volume 12, Issue 4 (2022)
Priyank Jaini, Kristian Kersting, Antonio Vergari, and Max Welling. Recent Advancements in Tractable Probabilistic Inference (Dagstuhl Seminar 22161). In Dagstuhl Reports, Volume 12, Issue 4, pp. 13-25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@Article{jaini_et_al:DagRep.12.4.13,
author = {Jaini, Priyank and Kersting, Kristian and Vergari, Antonio and Welling, Max},
title = {{Recent Advancements in Tractable Probabilistic Inference (Dagstuhl Seminar 22161)}},
pages = {13--25},
journal = {Dagstuhl Reports},
ISSN = {2192-5283},
year = {2022},
volume = {12},
number = {4},
editor = {Jaini, Priyank and Kersting, Kristian and Vergari, Antonio and Welling, Max},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.4.13},
URN = {urn:nbn:de:0030-drops-172785},
doi = {10.4230/DagRep.12.4.13},
annote = {Keywords: approximate inference with guarantees, deep generative models, probabilistic circuits, Tractable inference}
}