Search Results

Documents authored by Wieseke, Nicolas


Document
Forbidden Time Travel: Characterization of Time-Consistent Tree Reconciliation Maps

Authors: Nikolai Nojgaard, Manuela Geiß, Daniel Merkle, Peter F. Stadler, Nicolas Wieseke, and Marc Hellmuth

Published in: LIPIcs, Volume 88, 17th International Workshop on Algorithms in Bioinformatics (WABI 2017)


Abstract
Motivation: In the absence of horizontal gene transfer it is possible to reconstruct the history of gene families from empirically determined orthology relations, which are equivalent to event-labeled gene trees. Knowledge of the event labels considerably simplifies the problem of reconciling a gene tree T with a species trees S, relative to the reconciliation problem without prior knowledge of the event types. It is well-known that optimal reconciliations in the unlabeled case may violate time-consistency and thus are not biologically feasible. Here we investigate the mathematical structure of the event labeled reconciliation problem with horizontal transfer. Results: We investigate the issue of time-consistency for the event-labeled version of the reconciliation problem, provide a convenient axiomatic framework, and derive a complete characterization of time-consistent reconciliations. This characterization depends on certain weak conditions on the event-labeled gene trees that reflect conditions under which evolutionary events are observable at least in principle. We give an O(|V(T)|log(|V(S)|))-time algorithm to decide whether a time-consistent reconciliation map exists. It does not require the construction of explicit timing maps, but relies entirely on the comparably easy task of checking whether a small auxiliary graph is acyclic. The algorithms are implemented in C++ using the boost graph library and are freely available at https://github.com/Nojgaard/tc-recon. Significance: The combinatorial characterization of time consistency and thus biologically feasible reconciliation is an important step towards the inference of gene family histories with hor- izontal transfer from orthology data, i.e., without presupposed gene and species trees. The fast algorithm to decide time consistency is useful in a broader context because it constitutes an attractive component for all tools that address tree reconciliation problems.

Cite as

Nikolai Nojgaard, Manuela Geiß, Daniel Merkle, Peter F. Stadler, Nicolas Wieseke, and Marc Hellmuth. Forbidden Time Travel: Characterization of Time-Consistent Tree Reconciliation Maps. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 88, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{nojgaard_et_al:LIPIcs.WABI.2017.17,
  author =	{Nojgaard, Nikolai and Gei{\ss}, Manuela and Merkle, Daniel and Stadler, Peter F. and Wieseke, Nicolas and Hellmuth, Marc},
  title =	{{Forbidden Time Travel: Characterization of Time-Consistent Tree Reconciliation Maps}},
  booktitle =	{17th International Workshop on Algorithms in Bioinformatics (WABI 2017)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-050-7},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{88},
  editor =	{Schwartz, Russell and Reinert, Knut},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2017.17},
  URN =		{urn:nbn:de:0030-drops-76362},
  doi =		{10.4230/LIPIcs.WABI.2017.17},
  annote =	{Keywords: Tree Reconciliation, Horizontal Gene Transfer, Reconciliation Map, Time-Consistency, History of gene families}
}
Document
On Weighting Schemes for Gene Order Analysis

Authors: Matthias Bernt, Nicolas Wieseke, and Martin Middendorf

Published in: OASIcs, Volume 34, German Conference on Bioinformatics 2013


Abstract
Gene order analysis aims at extracting phylogenetic information from the comparison of the order and orientation of the genes on the genomes of different species. This can be achieved by computing parsimonious rearrangement scenarios, i.e. to determine a sequence of rearrangements events that transforms one given gene order into another such that the sum of weights of the included rearrangement events is minimal. In this sequence only certain types of rearrangements, given by the rearrangement model, are admissible and weights are assigned with respect to the rearrangement type. The choice of a suitable rearrangement model and corresponding weights for the included rearrangement types is important for the meaningful reconstruction. So far the analysis of weighting schemes for gene order analysis has not been considered sufficiently. In this paper weighting schemes for gene order analysis are considered for two rearrangement models: 1) inversions, transpositions, and inverse transpositions; 2) inversions, block interchanges, and inverse transpositions. For both rearrangement models we determined properties of the weighting functions that exclude certain types of rearrangements from parsimonious rearrangement scenarios.

Cite as

Matthias Bernt, Nicolas Wieseke, and Martin Middendorf. On Weighting Schemes for Gene Order Analysis. In German Conference on Bioinformatics 2013. Open Access Series in Informatics (OASIcs), Volume 34, pp. 14-23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{bernt_et_al:OASIcs.GCB.2013.14,
  author =	{Bernt, Matthias and Wieseke, Nicolas and Middendorf, Martin},
  title =	{{On Weighting Schemes for Gene Order Analysis}},
  booktitle =	{German Conference on Bioinformatics 2013},
  pages =	{14--23},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-59-0},
  ISSN =	{2190-6807},
  year =	{2013},
  volume =	{34},
  editor =	{Bei{\ss}barth, Tim and Kollmar, Martin and Leha, Andreas and Morgenstern, Burkhard and Schultz, Anne-Kathrin and Waack, Stephan and Wingender, Edgar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.GCB.2013.14},
  URN =		{urn:nbn:de:0030-drops-42354},
  doi =		{10.4230/OASIcs.GCB.2013.14},
  annote =	{Keywords: Gene order analysis, maximum parsimony, weighting}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail